
Pacific Graphics 2018

H. Fu, A. Ghosh, and J. Kopf

(Guest Editors)

Volume 37 (2018), Number 7

Modeling Fonts in Context: Font Prediction on Web Designs

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau

City University of Hong Kong

Ground TruthOurs

HTML tag:
<h2>

Design tags:
Art-illustration; colorful; …

Input

Figure 1: Given a text element (outlined in red) on a web design for suggestion, together with some semantic tags (i.e., HTML and Design tags) on the left,
our method automatically selects font properties for the element (including font face, color, and size) that best fit the input web design. We show the original
web design (Ground Truth) on the right for reference.

Abstract
Web designers often carefully select fonts to fit the context of a web design to make the design look aesthetically pleasing and
effective in communication. However, selecting proper fonts for a web design is a tedious and time-consuming task, as each font
has many properties, such as font face, color, and size, resulting in a very large search space. In this paper, we aim to model
fonts in context, by studying a novel and challenging problem of predicting fonts that match a given web design. To this end,
we propose a novel, multi-task deep neural network to jointly predict font face, color and size for each text element on a web
design, by considering multi-scale visual features and semantic tags of the web design. To train our model, we have collected a
CTXFont dataset, which consists of 1k professional web designs, with labeled font properties. Experiments show that our model
outperforms the baseline methods, achieving promising qualitative and quantitative results on the font selection task. We also
demonstrate the usefulness of our method in a font selection task via a user study.

CCS Concepts
•Computing methodologies → Perception; Neural networks;

1. Introduction

Font is fundamental to web designs. Just like how the body lan-

guage and tone of a person can affect the perception of what the

person says, the font properties of the text on a webpage can convey

Ying Cao is the corresponding author. This work was led by Rynson Lau.

feelings and reactions that the text alone cannot. To make the de-

signs both aesthetically pleasing and effective in information com-

munication, web designers often select fonts carefully to fit their

designs, in terms of theme, mood, readability, etc.. For example,

the webpage of a hotel (Figure 2 top) uses delicate and serif font

faces and a tan font color to help convey a feeling of dignity and

elegance to the customers.

However, selecting proper fonts to fit the context of a web design

is a challenging problem, as one needs to explore a large search

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

space covering many font properties, such as font face, color and

size. There are some commercial tools (e.g., MyFonts and Typekit)

and a previous work [OLAH14] that help users select fonts by mod-

eling font similarity and attributes (e.g., serif and formal). Unfortu-

nately, they only model fonts in isolation without considering how

fonts are affected by the context where they are used. Therefore,

even with those state-of-the-art font selection techniques, users still

need a tedious trial-and-error process and a lot of expertise to put

fonts in context (i.e., selecting matching fonts for web designs), in

order to properly express the vision and mood of the whole designs.

In this paper, we take an initial step towards modeling fonts in
context, by predicting font properties for the text in web designs.

We consider three main properties of fonts defined in HTML: font

face, color, and size. We propose a novel multi-task deep neural

network (DNN) that, given a web design with a selected text ele-

ment, automatically predicts font properties for the text element to

match the web design. Our model simultaneously performs three

tasks: font face, color and size predictions, based on multi-scale

visual context, the semantic tags of the design and the HTML tag

of the text element. For the font face prediction task, instead of

casting it as a classification problem as in previous works on font

face recognition [ZTW01,WYJ∗15], we formulate it as a regression

problem to predict a point in a lower-dimensional embedding space

of font faces, for more efficient learning and better generalization

capability. The embedding space is learned in an unsupervised way

using an autoencoder network. To further improve the performance

of font face prediction, we adopt adversarial learning [GPAM∗14]

and a novel data augmentation method during training.

Since there are no existing datasets for our in-context font pre-

diction problem, we have created our own CTXFont (Context Font)

dataset from awwwards.com, a website with a large repository of

professional web designs. We obtain the annotations of text ele-

ments by automatically analyzing HTML source files. We train and

evaluate our model on CTXFont. Experimental results suggest that

our model gives more accurate predictions than the baseline meth-

ods. We also conduct a user study to demonstrate the usability of

our method in a font selection task.

In summary, the contributions of our paper are three-fold: (i)

We made an initial effort to predict fonts in context, by model-

ing the dependency of fonts upon the designs; (ii) We propose a

novel multi-task DNN for predicting font properties (i.e., font face,

color, and size) for text elements in web designs; (iii) For training

and evaluation of the in-context font prediction problem, we have

collected the CTXFont dataset, which contains web designs with

meta-data and annotations on font properties.

2. Related Work

To our knowledge, no prior works have directly studied automatic

font selection for graphic designs. We discuss the most relevant

previous works in this section.

Font modeling. As font is one of the core design factors, there

is a growing research interest on fonts in recent years. O’Donovan

et al. [OLAH14] proposed an approach to estimate attribute val-

ues (e.g., angular, artistic) and visual similarity of font face,

which enable various interfaces for font face selection. Wang et

Design tags:
‘food-drink’, ‘hotel-restaurant’, ‘events’ …
HTML tag of text element:
<p>

Font face: Radley
Font size: 16.8px
Font color: RGB (211, 175, 146)

Design tags:
‘red’, …
HTML tag of text element:
<h2>

Font face: Helvetica Neue
Font size: 119px
Font color: RGB (0, 0, 0)

Figure 2: Web designs with annotated text elements. For each web design,
we show its design tags given by designers and HTML tags for its anno-
tated text element (outlined in orange). The text element has several font
properties, including font face, color and size.

al. [WYJ∗15] proposed a stacked convolutional autoencoder net-

work with domain adaption techniques for font face recognition.

Some recent works put more efforts on font synthesis. Campbell

and Kautz [CK14] presented the first generative model for font

faces, which learns a manifold in a completely unsupervised man-

ner. To ensure the generated fonts are realistic and precise, ear-

lier works [CK14,PFC15] focused on geometric modeling of glyph

outlines, which limits the topology of the generated font faces. In

these two years, with the development of Generative Adversarial

Networks (GANs) [GPAM∗14], direct synthesis of new realistic

font faces in pixel format [LBY∗17,AFK∗17] with various topolo-

gies and styles has become possible. Unfortunately, all the existing

works consider fonts in isolation, without modeling their relation-

ship to the context where they are used. In contrast, our work aims

to put fonts into context, by predicting the font properties of the

text that best match with the web design where the text resides.

Assisting web design. Given the wealth of web designs that are

available online, many works adopt a data-driven method to assist

the web design process. Kumar et al. [KTAK11] introduced an al-

gorithm for web design retargetting, which can transfer design and

content between web designs. By acquiring and managing a large

repository of crawled web designs [KST∗13], applications such as

finding relevant design elements for inspiration become possible.

Pang et al. [PCLC16] developed a framework to allow designers to

direct user attentions on web designs by optimizing the properties

of design elements. While sharing the same objective of helping the

web design process, we focus on the problem of predicting fonts on

web designs, which has not been explored so far.

Multi-task learning in deep neural networks. Multi-Task

Learning (MTL) [Car98] is a general approach to learn related

tasks jointly while using a shared representation. These multiple

tasks usually have inherent relations and thus can benefit each other

during training. MTL has been used successfully in many applica-

tions, from natural language processing [CW08], speech recogni-

tion [DHK13], to computer vision [HGDG17]. We refer readers to

the survey in [Rud17] for a detailed discussion on MTL in DNNs.

Our work builds upon this general learning framework to jointly

predict font face, color, and size of a text element in a web design.

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

3. CTXFont Dataset

The CTXFont (Context Font) dataset is a collection of web designs

with meta-data and text element annotations. To ensure the fonts

of the text elements in all the web designs are chosen in a profes-

sional way, the web designs are taken from awwwards.com, a web-

site competition platform where uploaded web designs are rated by

the professionals in the design community. For each website, we

first captured screenshots of the webpages as our web designs using

a Chrome browser of 768× 1366 in resolution, which is the most

widely used screen resolution [w3s17]. We then obtained the prop-

erties of the text elements on each webpage by analyzing its HTML

source file. Note that not all the fonts shown on a webpage can be

obtained, as some of them may be in image format. In total, there

are 1,065 web designs, with 4,893 text elements and 492 unique

font faces. Figure 2 shows some examples in the dataset. In CTX-

Font, we provide the following annotations. For each web design,

we have the URL, design tags given by the designer to describe the

main characteristics of the design, country of the designer and the

number of votes by viewers. For each text element, we have the

font face, color, size, position, HTML tags, text content, margin,

padding and bounding box.

4. Our Approach

4.1. Problem formulation

Given a text element in a given web design, our goal is to predict a

font face, color, and size for it. As these three tasks are correlated

with each other, we propose to jointly estimate the three properties

with a multi-task learning framework. In particular, given a text

element e on a web design d, we want to learn a function f to

predict its font face e f , size es and color ec: (e f ,es,ec) = f (d,e) as

follows:

• Font color prediction. We do it in the RGB color space. A

straightforward solution is to directly predict the color values

using an L2 loss [ISSI16]. However, with the multimodal nature

of the color prediction problem, this loss is not appropriate, as it

may suffer from the regression-to-mean problem. We thus treat

this problem as a multi-class classification.

• Font size prediction. We formulate it as a regression problem

due to its continuous nature.

• Font face prediction. Unlike previous work [WYJ∗15] on font

face recognition, which directly classifies font face names, we

assume that all font faces lie in a low-dimensional embedding

space, as in [CK14], and regress an input font face to a feature

point in this space. Our regression-to-feature formulation has

several advantages. First, unlike the classification-based model

that involves many class-specific parameters (i.e., a softmax

layer with many units) due to a large number of possible font

faces, our lower-dimensional output space results in fewer pa-

rameters in our model, enabling more efficient learning. Second,

our model can be easily extended to handle new font faces out-

side of the training data by projecting new font faces into the em-

bedding space. In our work, we use an autoencoder to automati-

cally discover the embedding space of font faces, as described in

Section 4.2.

Table 1: The architecture of our autoencoder. (C - convolutional layer, BN
- BatchNorm layer, T - Tanh layer, and N - Normalization layer.)

Type Kernel size Stride size Output size

Encoder

C-BN-T 11x11 4x4 64x56x56

C-BN-T 3x3 4x4 128x14x14

C-BN-T 3x3 4x4 256x3x3

C-BN-T 3x3 2x2 256x1x1

C-N 1x1 1x1 40x1x1

Decoder

DC-BN-T 7x7 1x1 256x7x7

DC-BN-T 4x4 4x4 128x28x28

DC-BN-T 4x4 4x4 64x112x112

DC-T 2x2 2x2 3x224x224

Figure 3: 2D visualization of our font face embedding space.

4.2. Learning the Font Face Embedding Space

Our goal is to learn a latent embedding space of font faces, where

similar font faces are put closer to each other while the dissimilar

ones are pulled far apart. We leverage an autoencoder to automat-

ically learn the embedding space in an unsupervised way, inspired

by its recent success on feature learning [HBL∗07]. To better en-

code visual characteristics of font faces, we represent each font face

as an image. In particular, for each font face, we create a 224×224

image by rendering the same set of letters using the font face as

illustrated in Figure 3.

Our autoencoder consists of an encoder that maps a font face

image to a latent feature vector, and a decoder that reconstructs the

font face image from the feature vector. Table 1 shows its archi-

tecture. We extract the output of the encoder as the feature vectors

that represent a 40-dimensional font face embedding space. Note

that we add a normalization layer at the end of the encoder to en-

sure that all feature vectors are unit vectors. To train the network,

we use L2 loss and crawled 35,364 TrueType font faces from the

web. In Figure 3, we show a 2D visualization of random font faces

from Google Fonts, which are not present in our training dataset.

Note how the distance between different font faces in the embed-

ding space reflects the similarity of their appearances.

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

4.3. Our Network

Figure 4 illustrates the architecture of our multi-task font network.

For a given text element e, to make our prediction aware of both

visual and semantic contexts, our network takes as input the whole

design image Id , local image patch Ip centered at e, the designer-

given tags td and HTML tags th of e. Each input is sent to a sep-

arate encoder to produce a high-level feature representation. They

are then concatenated and sent to the font decoder to output three

font properties: font face (e f), color (ec), and size (es). To improve

the quality of font face prediction, we add an additional discrimi-

nator to the font face prediction branch, as inspired by the recent

success of adversarial learning approaches [IZZE17, WWXT17].

We describe each part of our model below.

4.3.1. Global and Local Visual Context Encoders

Selecting suitable fonts for a web design requires considering vi-

sual content and structure of the design at different scales (e.g., the

color theme and layout of the design, the contents of images, and

the neighborhood of the text element). To account for these factors,

we introduce global and local visual context encoders to capture

multi-scale visual semantics. The input of the global visual context

encoder network Id is the entire input web design d at a resolution

of 168× 300, to keep the aspect ratio of the original screenshot.

Before resizing the image to the input size, we exclude the region

covered by the bounding box of e by filling it with the mean colors

of the pixels on the boundary (10-pixel wide) of the bounding box.

The input to the local visual context encoder Ip is cropped from

Id at the center of e, at a resolution of 90× 150 with zero padding

for the region outside of d. Both encoders have 4 convolutional

layers with one fully-connected layer. Each convolutional layer is

followed by a BatchNorm layer and a leakyReLU layer (slope 0.2).

4.3.2. Tag Encoders

When creating a web design, designers may label the design with

some high-level semantic tags to describe the main characteristics

and objectives of the design (e.g., the design objective and the mood

of the design). These tags can play an important role in determin-

ing what fonts better fit the design. For example, when “business”

tags are provided, the fonts to be used may exhibit a higher degree

of “formal” and lower degree of “artistic”. In addition, the HTML

tags enclosing the text elements (e.g., “button”, “h1”, “a”, and “p”.)

are also strong indicators of the font properties. For example, the

use of “h1” would mean a text element is a title and thus should

have a larger font size and more eye-catching font face and color.

To model these, we introduce two tag encoders: design tag encoder

and HTML tag encoder. Since there may exist multiple tags for a

design or a text element, we encode a tag in our encoders with a

binary Bag-of-Words (BoW) representation, i.e., td ∈ {0,1}M and

th ∈ {0,1}N , where M and N are the numbers of design tags and

HTML tags, respectively. The i-th value of the BoW vector is set to

1 if the i-th tag is applied to a design/text element. Each of the tag

encoders has three fully-connected layers with leakyReLU activa-

tion (slope 0.2), resulting in a 64D feature vector.

4.3.3. Font Decoder

The font decoder concatenates the feature vectors from the en-

coders to generate three outputs: font face, color, and size. We de-

scribe a font face e f as a point in the learned embedding space (Sec-

tion 4.2). We measure a font size es in pixel, and normalize it to [0,

1] by dividing the font height by the height of the design screenshot

(i.e., 768). For font color ec, we first quantize each RGB channel

into 26 bins with an interval of 10, and then represent each channel

as a 26D one-hot vector (eR
c ,e

G
c ,e

B
c). The bin containing the target

color value is set to 1, while others are set to 0. With three different

outputs, our font decoder first feeds the concatenated feature vector

to two shared fully connected layers of 512 hidden units to obtain

a shared feature vector, and is then split into three branches.

For font color, three softmax layers of 26 hidden units are added

to predict three color channels. A 40D (or 1D) fully-connected

layer with tanh activation is used to regress font face (or size). All

the fully-connected layers, except the last one, for each branch use

the leakyReLU activation (slope 0.2). For font face, we add a nor-

malization layer after the last layer, as stated in Section 4.2.

During prediction, for font face, we use the predicted feature

vector to retrieve a list of ranked font faces from the local font face

dataset, measured by the cosine distance in the font-face embed-

ding space. To predict a RGB font color, for each color channel, we

compute a sum of bin center colors, weighted by the predicted bin

probabilities.

4.3.4. Loss Function

We use a multi-task loss L to train our network for each text ele-

ment. Let e and ê be the ground truth and prediction, respectively.

Our loss is defined as:

L(e, Id , Ip, td , th) = λ1L f (ê f ,e f)+λ2Lc(êc,ec)+λ3Ls(ês,es), (1)

where L f , Lc, Ls are losses for font face, color and size predictions,

respectively. λi controls the balance among the three losses.

For font face prediction, we use a L2 loss to minimize the dis-

tance between the ground truth and predicted feature vectors as:

Lrec(ê f ,e f) = ||e f − ê f ||22. (2)

However, for a given input (i.e., a text element on a web design),

there may be multiple font faces that are consistent with the input.

To handle multiple modes in the output, we introduce an additional

adversarial loss, which can pick a particular mode from a distribu-

tion. Our adversarial loss is based on Generative Adversarial Net-

works (GANs) [GPAM∗14], where our font face branch is used as

generator G and a font face discriminator D is introduced. Note

that, in our context, instead of mapping a random noise to a sam-

ple, our generator maps the inputs to a font feature. The learning

procedure is a two-player game, where D aims to distinguish sam-

ples X̂ f generated by G from real samples X f in our dataset, and G
tries to confuse D by producing predictions as “real” as possible:

min
G

max
D

Ee f ∈X f [log(D(e f))]+Eê f ∈X̂ f
[log(1−D(ê f))], (3)

where ê f = G(e, Id , Ip, td , th).

The total loss for font face prediction is then defined as:

L f (ê f ,e f) = w f1
Lrec(ê f ,e f)+w f2

log(1−D(ê f)), (4)

and the loss of the font face discriminator is defined as:

−log(D(e f))− log(1−D(ê f)). (5)

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

HTML tags

Design tags

<a>

<p>
<h1>
…

events
flat-design

colorful …

Global Visual Context Encoder

Local Visual Context Encoder

HTML Tag Encoder

Design Tag Encoder

Font Decoder Font-face Discriminator

Real or Fake

Font Color

Font size

Font face embedding vector

64 128 256 512 512

64 128 256 512 512

54 128 128

10 128 128

1152
512 512

64

64

1404040

26
26

26

Web design

Local patch

3

3

5x5
3x3

3x3
3x3

11x11

3x3

3x3
3x3

Convolutional layer Flatten layer Fully connected layer

Figure 4: The architecture of our network.

For font color prediction, we use the cross entropy loss. As the font

color is highly imbalanced (around 70% of the text elements in our

dataset with colors in white, black, or different levels of gray), we

adopt a re-weighting loss by assigning a weight based on color-

class rarity [ZIE16].

Lc(êc,ec) =−[wc(ec) ∑
i∈(R,G,B)

∑
q∈Q

ei
c,qlog(ˆei

c,q)]/3, (6)

where Q is the number of color bins (i.e., 26), and wc is the rebal-

anced weight [ZIE16].

For font size prediction, we use the L1 loss as:

Ls(ês,es) = ||es − ês||1. (7)

5. Implementation Details

To extract design tags used in our model, we searched over our

dataset and only kept those used in at least 30 different web de-

signs. We then manually removed some tags related to the design

technique, such as “java” and “CSS”. There are M = 54 design

tags left at the end. For the HTML tags of text elements, we use

the N = 10 most frequently used HTML tags: “a”, “button”, “h1”,

“h2”, “h3”, “h4”, “h5”, ‘h6”, “li”, “p”.

To train our network, we randomly split the CTXFont dataset

into a training set with 915 web designs (4,268 text elements) and a

testing set with 150 web designs (625 text elements). We determine

the hyperparameters through 5-fold cross validation on the training

set. We use the Adam optimizer [KB14] for optimization with β1 =
0.5 and β2 = 0.999. We use a learning rate of 1e−3. We alternately

minimize the loss functions defined in Equation 1 and 5 to update

the parameters of our network, as in [GPAM∗14]. We use a dropout

Table 2: Accuracy and F1 score of various methods on font color predic-
tion. (The best scores are in bold. L = local visual context encoder, G =
global visual context encoder, D = design tag encoder, H = HTML tag en-
coder)

Method Accuracy (%) F1 score (%)

Random 0.02 0.00

Retrieval 22.88 23.85

L 40.64 29.80

L+G 39.36 32.85
L+H 43.84 31.17

L+D 42.08 30.17

L+D+H 38.40 30.42

L+G+D 38.40 31.31

L+G+H 35.68 31.54

Single 42.72 31.95

All (no adv) 37.12 31.11

All (no aug) 30.88 29.29

All 39.68 31.72

rate of 0.2 for all layers, except the input and the output layers. We

train the network using a batch size of 64 for 24,000 iterations. We

set λ1 = 1,λ2 = 1,λ3 = 1,w f1
= 1,and w f2

= 1 so as to balance the

scale of losses for different tasks. This approach is commonly used

in multi-task learning. Our current setting is found to give the best

performance. An improper setting of these parameters may cause

the model to be biased towards certain tasks and thus decrease the

overall performance.

Data augmentation. During training, we adopt a data augmen-

tation on font faces, in order to increase the diversity of font faces

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Font face threshold

Comparison with baselines

[72.6] Ours
[65.4] Retrieval
[53.4] Random

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Font face threshold

Different network architectures

[72.6] Ours
[69.3] L+G+H
[68.3] L+G+D
[66.9] L+G
[66.2] L+D
[63.4] L+D+H
[62.9] L+H
[61.6] L

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Font face threshold

Different training strategies

[72.6] Ours
[69.4] w/o aug
[69.1] Single
[68.4] w/o adv

0 5 10 15 20
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Font size threshold

[71.2] Ours
[63.3] Retrieval
[53.0] Random

0 5 10 15 20
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Font size threshold

[71.2] Ours
[70.6] L+G+H
[69.8] L+H
[65.3] L+D+H
[63.7] L+D
[60.6] L+G
[59.9] L+G+D
[59.2] L

0 5 10 15 20
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Font size threshold

[71.2] Ours
[70.1] w/o aug
[57.6] w/o adv
[31.7] Single

Figure 5: Accuracy versus distance threshold for font face prediction (the first row) and font size prediction (the second row). We use cosine distance for font
face and l1 distance for font size. In the legend, we report the average accuracies. Left column: we compare our method (Ours) with two baselines (Random,
Retrieval). Middle column: we compare different architectures of our network (L = local visual context encoder, G = global visual context encoder, D = design
tag encoder, H = HTML tag encoder). Right column: we compare our model trained with the proposed learning strategy (Ours), our model trained without
adversarial loss (w/o adv), our model without data augmentation (w/o aug), and single-task models (Single).

that the model sees. For each font, we further find 5 nearest neigh-

bors of its font face from the font face dataset (the font face space in

Section 4.2) as its target font faces. The affinity between font faces

are measured by cosine distance in the font face embedding space.

6. Results and Evaluations

In this section, we first show the qualitative and quantitative results

of our method, as compared with several baselines. We then vali-

date various design choices for our network architecture and learn-

ing strategies. Finally, we evaluate the effectiveness of our method

in the font selection tasks via a user study.

6.1. Comparison with Baseline Methods

6.1.1. Baselines

We compare our method with two baselines:

Random. The random baseline is used to show whether font

choices on web designs are arbitrary or not. For font face, we ran-

domly select a font face from the training set. For font color, we

randomly select a RGB color from our quantized color space. For

font size, we randomly select an integer between 0 and the height

of the selected text element’s bounding box.

Retrieval. We use a retrieval-based method as baseline, to mimic

designers’ commonly used strategy of using similar example de-

signs for inspiration. For both font face and color predictions, given

a text element, we take the average font face and color of its k
nearest neighbors (NNs) in the training set as the predicted values.

The NNs are returned by measuring the cosine distance between

the visual context features of the text elements, which are obtained

by concatenating a global VGG feature and a local VGG feature.

The VGG features are computed in the same way as in our visual

context encoders, but are taken from the penultimate layer of a 16-

layer VGG [SZ14] pre-trained on ImageNet [DDS∗09]. We resize

the inputs to the VGG to 224× 224. We have empirically found

that k f ace = 3 and kcolor = 1 obtain good performance on these

two tasks, and use them in our experiments. Since the HTML tags

largely determine the setting of the font size, for the font size of

each query text element, we take the average font size of the text

elements in the training set that have the same HTML tag vectors

as the query one to be the prediction.

6.1.2. Evaluation Metrics

Metrics for font face and size. For these two tasks, we compute

the accuracy versus distance threshold. In particular, for each pre-

diction, we compute the distance between the predicted value and

the ground truth. The predicted value is regarded as correct if the

distance is smaller than a threshold. For font face prediction, we use

the cosine distance with a threshold ranging from 0 to 1. For font

size prediction, we use L1 distance with a threshold ranging from

0 to 20 (the average difference of font sizes in our dataset), and

convert the normalized outputs back to the pixel-wise values for

evaluation. To summarize the performance of a method, for font

face, we report the average accuracy of thresholds ranging from

0.05 to 1, with an interval of 0.05. For font size, we report the av-

erage accuracy of thresholds ranging from 2 to 20, with an interval

of 2.

Metrics for font color. The color prediction task as a classifi-

cation problem is evaluated using accuracy and F1 score. For each

of the three color channels in our prediction, we take the color bin

with the highest probability. Accuracy is the fraction of predicted

colors that match with the ground-truth color on all three R,G,B

channels. To calculate the F1 score, we first calculate the precision

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

Table 3: Results of pairwise comparisons in our user study. We show the
raw percentages that our results are preferred over those by the baseline
methods (Random and Retrieval), human manually (Manual) and ground
truth (Ground Truth). As we have preference votes from multiple partici-
pants for each comparison, we also show the percentages of comparisons
where our results have more or the same votes (Tie), compared with the oth-
ers. All preference are statistically significant, according to a chi-squared
test with p < 0.05.

Raw Majority

(Ours) (Ours / Tie)

Random 85.5% 96.3% / 3.7%

Retrieval 66.3% 70.4% / 3.7%

Manual 55.8% 54.9% / 9.9%

Ground Truth 35.5% 22.2% / 11.1%

P and recall R for each RGB bin triplet (qR,qG,qB):

PqR,qG,qB =
N c

qR,qG,qB

N p
qR,qG,qB

,RqR,qG,qB =
N c

qR,qG,qB

N g
qR,qG,qB

, (8)

where qR ∈ QR,qG ∈ QG,qB ∈ QB, N c is the number of correct

predictions for triplet (qR,qG,qB), N p is the number of total pre-

dictions for triplet (qR,qG,qB), and N g is the number of ground-

truth triplets (qR,qG,qB). Simply aggregating P and R with the

same weight for each triplet (qR,qG,qB) is inappropriate, which

will make the F1 score dominated by frequent triplets. Thus, we

use a weighted F1 score:

F1 = ∑
qR,qG,qB

N g
qR,qG,qB

∑N g
qR,qG,qB

2PqR,qG,qBRqR,qG,qB

(PqR,qG,qB +RqR,qG,qB)
. (9)

6.1.3. Results

Figure 5 and Table 2 show the quantitative results. Our method out-

performs the baseline methods by a large margin on all three tasks.

Figure 6 shows some qualitative results of our method, compared

with those from the baselines and the ground truth. In comparison

with the baseline methods, our method can predict font properties

that are more visually aesthetic (i.e., more compatible font colors

and faces) and functionally valid (i.e., better readability and visi-

bility). Our predicted font properties look rather similar to those in

the ground truth most of the time. Even though our method does

not suggest the same fonts as the ground truth since there may be

multiple compatible fonts with a single input design, our suggested

fonts still look plausible and favorably fit the input designs. For ex-

ample, as shown in the example in the middle column of Figure 6,

our method suggests a green color for the text element in the nav-

igation bar, which is visually consistent with the background color

of the logo and button.

6.2. Ablation Study

6.2.1. Evaluation of the Network Design

To investigate how the different encoders in our network affect the

prediction performance, we use the network with only the local vi-

sual context encoder as our basic model, and add other encoders to

observe the performance change. We have tested all possible com-

binations. In each case, the model is trained from scratch with the

revised architecture. For fair comparison, the training setting is the

same as our full model. Results are shown in Figure 5 and Table 2.

Both the global visual context encoder and design tag encoder can

help improve the performance of font face prediction by a large

margin. One possible reason is that some global visual and seman-

tic characteristics, such as the mood and theme, are indispensable

for font face selection. For font size, unsurprisingly, the HTML tag

encoder is the key to high performance. However, for font color,

adding more encoders can only achieve marginal performance gain,

indicating that the local encoder may have sufficient features for

font color prediction. We have also tested other possible influential

inputs to our work, i.e., semantics and number of words in a text

element, but do not observe any performance improvement.

6.2.2. Evaluation of Learning Strategies

We finally test the effect of different learning strategies. The results

are shown in Figure 5 and Table 2.

The role of adversarial learning. We test the importance of the

adversarial loss Ladv by removing it from our loss function (w/o
adv). We can observe that, without the adversarial loss, a signifi-

cant performance drop occurs for font face prediction and the per-

formances for font size and color predictions are also decreased

accordingly. This implies the importance of using adversarial loss

in our network.

The role of data augmentation on font face. When training our

model without data augmentation for font face (w/o aug), we also

see a slightly worse performance for the three tasks. This suggests

that our model can benefit from this simple data augmentation.

The role of joint learning. To verify whether joint learning

can improve the performance for each task. We train our model

separately for each of the three tasks with their respective losses

(Single). From the results, we can see that our multi-task model

significantly outperforms the single-task models on font face and

size predictions, although with a slightly worse performance on

font color prediction. This demonstrates the effectiveness of our

multi-task joint learning framework.

6.3. User Studies

We finally test the usefulness of our method in real-world font se-

lection tasks via a user study.

Methodology. In the study, we use 20 web designs with diverse

appearances from the testing set. For each design, we first ran-

domly select a text element and use its original font properties as

the ground truth. We then generate font suggestions by our method

(Ours), the random baseline (Random), the retrieval-based baseline

(Retrieval) and the manual process (Manual). To generate manual

results, we recruited 20 graduate students without any prior expe-

riences on web design. Given a web design with a target text ele-

ment, the participants were asked to select the font properties (font

face, color and size) for the text element that best match the given

design. We choose PowerPoint as our font selection tool, since it

is more intuitive to use for average people as compared to editing

the HTML source code directly. For font face selection, the partic-

ipants were allowed to use either the font list in PowerPoint or the

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

Input

<p>
E-commerce; …

<a>
E-commerce; green; …

<a>
Design-agencies; portfolio; …

Random

Retrieval

Ours

Ground Truth

Figure 6: Visual comparison of the results by our method (Ours) and the baselines (Random and Retrieval), against the ground truth.

font selection interface proposed by [OLAH14]. To be consistent

with [OLAH14], we use a total of 1,278 font faces in our method

as well as the two baseline methods. Each participant was asked to

complete the font selection for 5 different designs.

We use Amazon Mechanical Turk (AMT) to evaluate the font se-

lections by different methods. In particular, we asked AMT work-

ers to compare our results with those from other methods through

pairwise comparisons in the two-alternative forced choice (2AFC)

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

0%

20%

40%

60%

80%

vs. Random vs. Retrieval vs. Manual vs. Ground Truth

Font face Color Size

Figure 7: The distributions of influential font properties when comparing
our results with other results in the user study.

Figure 8: Average time spent by participants on selecting all or individual
font properties for a single text element.

manner (i.e., they are forced to choose one of the two presented

options), in order to better measure small differences [OLAH14].

For each of the 20 designs, we create 4 comparison pairs, each of

which consists of two results, one by our method and the other

from one of the 4 sources (Random, Retrieval, Manual and Ground

Truth). For each comparison, two designs with the selected fonts

(the two designs only differ in the font used for the target text el-

ement) were displayed side-by-side in random order. The partici-

pants were asked to select the font which is more suitable for the

design. The design and HTML tags were also displayed beside the

designs for reference. Meanwhile, the participants were required

to choose the font properties (i.e., font face, color and size) that

most affect their choices (termed as influential font properties) for

each comparison. Each comparison was evaluated by 20 different

workers. Each HIT consists of 20 different comparisons. For each

worker, we further duplicated five randomly chosen comparisons

and swap the presentation order of the two designs in each compar-

ison to reject unreliable workers. Workers need to answer four of

them consistently for their data to be accepted.

Results. Table 3 shows results of our user study. Our results

are significantly preferred over those by the baselines and manual

method, although worse than the ground truth. This implies that

our method is more effective than the other alternatives in the font

selection task, and can suggest font properties that better match

the target web designs. To understand what font properties con-

tribute most to the perceived compatibility of fonts with web de-

signs, we plot in Figure 7 the distributions of influential font proper-

ties when comparing our results with other results during the study.

As shown in Figure 7, the influential properties vary with different

methods that our method is compared against. When comparing

our results with the baseline results, color plays a more important

role in determining the quality of the font selection than font face

and size. When comparing our results with the manual results, font

face plays a more important role. When comparing our results with

the ground truth, font face determines the participants’ choices for

almost 70% of the time, which in turn indicates that our method is

on par with the ground truth, in terms of color and size.

Figure 8 shows the average time taken by the participants to man-

ually complete a single selection task for different font properties.

In general, the participants spent more time on font face (more than

0.5 min on average) than font color and size. On average, the partic-

ipants need more than 1.5 min to select all the three font properties

for a single text element, whereas our method can generate font

suggestions in real time. Besides, during the user study, we noticed

that the participants tended to use a few font faces and colors that

they had used before, even though they were given a much larger

font and color space to choose from. This reduces the selection time

but limits the diversity of the results. In contrast, our method can

generate diverse suggestions. Figure 9 and the supplemental show

the results by our method, the baselines and the participants.

7. Conclusion and Future Work

In this paper, we have studied the problem of modeling fonts con-

ditioned on the context where they are used. To this end, we have

presented a novel multi-task deep neural network, which can pre-

dict a font face, color, and size for a text element in a web design.

We have conducted extensive qualitative and quantitative evalua-

tions to show the effectiveness of our proposed model on a newly

collected benchmark dataset, and run a user study to demonstrate

the usability of our method in a font selection task.

This work is just an initial step towards addressing the problem

of context-aware font prediction in web designs. We believe that

there are still many exciting problems worth exploring in the future.

First, we have only considered three common and important font

properties in this work. We would like to explore other typography-

related properties (e.g., space between words or text rows), which

may also be set under the context of a design. Second, we have

only considered the prediction of existing font faces. It would be

interesting to investigate how to generate new font faces for web

designs. This will allow us to customize different font faces to dif-

ferent graphic designs, instead of using the same set of pre-defined

font faces for all the designs. Third, although we have only focused

on web designs in this paper, our framework is generic and can

be easily adapted to deal with other types of graphic designs (e.g.,

posters or magazine covers). We show some rudimentary results of

directly applying our model (without any retraining or finetuning)

to some posters. While our results are somewhat different from the

ground truth, they still look plausible and visually consistent with

the input posters. We envision that better results can be obtained

by re-training our model on a poster dataset and/or modifying our

model to accommodate the characteristics of posters, which is an

interesting future work.

Acknowledgement. We thank the anonymous reviewers for

their insightful comments. We also thank NVIDIA for donation of

a Titan X Pascal GPU card.

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

Input

<p>
Art-illustration; e-commerce; clean; …

<h3>
Mobile & Apps; technology; …

<a>;
Art-illustration; colorful; …

Random

Retrieval

Manual

Ours

Ground Truth

Figure 9: Example results used in the user study. Top to bottom: input, baseline (Random), baseline (Retrieval), manual method (Manual), our method (Ours),
and the ground truth. Readers are suggested to zoom-in for a better viewing of the results.

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau / Modeling Fonts in Context: Font Prediction on Web Designs

HAVE
YOU SEEN
THIS MAN?

Ground TruthOursInput

Figure 10: Font prediction results of applying our model to two posters.
In each case, we set the HTML tag and design tag to be “h1” and empty,
respectively.

References
[AFK∗17] AZADI S., FISHER M., KIM V., WANG Z., SHECHTMAN

E., DARRELL T.: Multi-content gan for few-shot font style transfer.
arXiv:1712.00516 (2017). 2

[Car98] CARUANA R.: Multitask learning. In Learning to Learn.
Springer, 1998, pp. 95–133. 2

[CK14] CAMPBELL N. D., KAUTZ J.: Learning a manifold of fonts.
ACM TOG 33, 4 (2014), 91. 2, 3

[CW08] COLLOBERT R., WESTON J.: A unified architecture for natural
language processing: Deep neural networks with multitask learning. In
Proc. ACM ICML (2008), pp. 160–167. 2

[DDS∗09] DENG J., DONG W., SOCHER R., LI L.-J., LI K., FEI-FEI

L.: Imagenet: A large-scale hierarchical image database. In Proc. IEEE
CVPR (2009), pp. 248–255. 6

[DHK13] DENG L., HINTON G., KINGSBURY B.: New types of deep
neural network learning for speech recognition and related applications:
An overview. In Proc. IEEE ICASSP (2013), pp. 8599–8603. 2

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU

B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial nets. In Proc. NIPS (2014), pp. 2672–2680. 2, 4, 5

[HBL∗07] HUANG F. J., BOUREAU Y.-L., LECUN Y., ET AL.: Un-
supervised learning of invariant feature hierarchies with applications to
object recognition. In Proc. IEEE CVPR (2007), pp. 1–8. 3

[HGDG17] HE K., GKIOXARI G., DOLLÁR P., GIRSHICK R.: Mask
r-cnn. arXiv preprint:1703.06870 (2017). 2

[ISSI16] IIZUKA S., SIMO-SERRA E., ISHIKAWA H.: Let there be
color!: joint end-to-end learning of global and local image priors for au-
tomatic image colorization with simultaneous classification. ACM TOG
35, 4 (2016), 110. 3

[IZZE17] ISOLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-to-
image translation with conditional adversarial networks. In Proc. IEEE
CVPR (2017), pp. 5967–5976. 4

[KB14] KINGMA D., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980 (2014). 5

[KST∗13] KUMAR R., SATYANARAYAN A., TORRES C., LIM M., AH-
MAD S., KLEMMER S. R., TALTON J.: Webzeitgeist: design mining the
web. In Proc. ACM SIGCHI (2013), pp. 3083–3092. 2

[KTAK11] KUMAR R., TALTON J., AHMAD S., KLEMMER S.: Brico-
lage: example-based retargeting for web design. In Proc. ACM SIGCHI
(2011), pp. 2197–2206. 2

[LBY∗17] LYU P., BAI X., YAO C., ZHU Z., HUANG T., LIU W.: Auto-
encoder guided gan for chinese calligraphy synthesis. arXiv:1706.08789
(2017). 2

[OLAH14] O’DONOVAN P., LĪBEKS J., AGARWALA A., HERTZMANN

A.: Exploratory font selection using crowdsourced attributes. ACM TOG
33, 4 (2014), 92. 2, 8, 9

[PCLC16] PANG X., CAO Y., LAU R. W., CHAN A.: Directing user
attention via visual flow on web designs. ACM TOG 35, 6 (2016), 240.
2

[PFC15] PHAN H. Q., FU H., CHAN A.: Flexyfont: Learning trans-
ferring rules for flexible typeface synthesis. In CGF (2015), vol. 34,
pp. 245–256. 2

[Rud17] RUDER S.: An overview of multi-task learning in deep neural
networks. arXiv:1706.05098 (2017). 2

[SZ14] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. arXiv:1409.1556 (2014). 6

[w3s17] W3SCHOOLS.COM: Browser display statistics. https://
www.w3schools.com/browsers/browsers_display.asp,
Jan 2017. 3

[WWXT17] WANG C., WANG C., XU C., TAO D.: Tag disentangled
generative adversarial network for object image re-rendering. In Proc.
IJCAI (2017), pp. 2901–2907. 4

[WYJ∗15] WANG Z., YANG J., JIN H., SHECHTMAN E., AGARWALA

A., BRANDT J., HUANG T.: Deepfont: Identify your font from an im-
age. In Proc. ACM MM (2015), pp. 451–459. 2, 3

[ZIE16] ZHANG R., ISOLA P., EFROS A.: Colorful image colorization.
In Proc. ECCV (2016), Springer, pp. 649–666. 5

[ZTW01] ZHU Y., TAN T., WANG Y.: Font recognition based on global
texture analysis. IEEE TPAMI 23, 10 (2001), 1192–1200. 2

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

