
Make Your Own Sprites: Aliasing-Aware and Cell-Controllable
Pixelization
ZONGWEI WU, South China University of Technology, China

LIANGYU CHAI, South China University of Technology, China

NANXUAN ZHAO, University of Bath, United Kingdom

BAILIN DENG, Cardiff University, United Kingdom

YONGTUO LIU, University of Amsterdam, Netherlands and South China University of Technology, China

QIANG WEN, Hong Kong University of Science and Technology, China and South China University of Technology, China

JUNLE WANG, Tencent, China
SHENGFENG HE∗, South China University of Technology, China

2× 4× 6×

Fig. 1. We propose a novel pixelization approach that can automatically and robustly convert icons, clip arts, paintings, posters, and game scenes to pixel arts.

The resulting pixel arts contain crisp and sharp details (see the portrait in the upper left corner and the icons below), while being controllable in the cell size

(see the upper right corner). (© Tencent, © Nintendo Co., Ltd., © Paul Lamy de La Chapelle.)

∗Corresponding author.

Authors’ addresses: Zongwei Wu, South China University of Technology, Guangzhou,
China, zongweiwu999@gmail.com; Liangyu Chai, South China University of Tech-
nology, Guangzhou, China, icepoint1018@gmail.com; Nanxuan Zhao, University
of Bath, United Kingdom, nanxuanzhao@gmail.com; Bailin Deng, Cardiff Univer-
sity, Cardiff, United Kingdom, DengB3@cardiff.ac.uk; Yongtuo Liu, University of
Amsterdam, Amsterdam, Netherlands and South China University of Technology,
Guangzhou, China, y.liu6@uva.nl; Qiang Wen, Hong Kong University of Science
and Technology, Hong Kong, China and South China University of Technology,
Guangzhou, China, chineseqiangwen@gmail.com; Junle Wang, Tencent, Shenzhen,
China, jljunlewang@tencent.com; Shengfeng He, South China University of Technol-
ogy, Guangzhou, China, hesfe@scut.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

Pixel art is a unique art style with the appearance of low resolution images.

In this paper, we propose a data-driven pixelization method that can pro-

duce sharp and crisp cell effects with controllable cell sizes. Our approach

overcomes the limitation of existing learning-based methods in cell size

control by introducing a reference pixel art to explicitly regularize the cell

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.
0730-0301/2022/12-ART193 $15.00
https://doi.org/10.1145/3550454.3555482

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:2 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

structure. In particular, the cell structure features of the reference pixel art

are used as an auxiliary input for the pixelization process, and for measuring

the style similarity between the generated result and the reference pixel

art. Furthermore, we disentangle the pixelization process into specific cell-

aware and aliasing-aware stages, mitigating the ambiguities in joint learning

of cell size, aliasing effect, and color assignment. To train our model, we

construct a dedicated pixel art dataset and augment it with different cell

sizes and different degrees of anti-aliasing effects. Extensive experiments

demonstrate its superior performance over state-of-the-arts in terms of cell

sharpness and perceptual expressiveness. We also show promising results

of video game pixelization for the first time. Code and dataset are available

at https://github.com/WuZongWei6/Pixelization.

CCS Concepts: •Applied computing→ Fine arts; • Computing method-

ologies→ Image processing.

Additional Key Words and Phrases: Pixelization, Generative Adversarial

Networks, Image-to-Image Translation

ACM Reference Format:

ZongweiWu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang

Wen, JunleWang, and Shengfeng He. 2022. Make Your Own Sprites: Aliasing-

Aware and Cell-Controllable Pixelization. ACM Trans. Graph. 41, 6, Arti-

cle 193 (December 2022), 16 pages. https://doi.org/10.1145/3550454.3555482

1 INTRODUCTION

Pixel art is an art form with the appearance of low resolution images.
It can be considered as a 2D grid where each grid cell contains N×N
pixels of the same color. It was primarily associated with the art
style of video games from the 80s. Because of its unique style and
nostalgia, pixel art has gained popularity not only in video games
but also in other domains such as advertisement. Due to the limited
resolution, pixel art needs careful arrangement of the colored cells to
effectively represent the underlying content, which requires artistic
sense and graphic design skills and can be time-consuming even for
professional artists. Therefore, there is a demand for computational
tools that can automatically convert a higher-resolution image into
pixel art. Such a tool should ideally meet the following requirements:

• Aliasing-aware: the pixel art should have sharp and crisp edges
instead of anti-aliasing appearance (see Fig. 2 (d) for an example
of such anti-aliasing appearance). This helps to imitate the style
of early video games that pixel arts originate from, where the
small palette limits the possibility of applying anti-aliasing.

• Cell-controllable: the user can control the cell size of the result as
needed (see the upper right part of Fig. 1).

• Detail-preserving: the result should preserve the appearance of
features and continuous edges as much as possible.

• Unpaired-data: for a learning-based method, its training should
not require paired data of pixel arts and their corresponding high-
resolution images, since large-scale datasets of such paired images
are currently not available.

Existing methods do not meet all criteria simultaneously. For ex-
ample, a simple approach to converting images into pixel arts is
image downsampling. However, classical downsampling approaches
such as nearest-neighbor and bicubic often produce unsatisfactory
results: the former can lose crucial details from the original image
(see the discontinuous block silhouette curves in Fig. 2 (c)), while
the latter can produce undesirable anti-aliasing appearance (see
Fig. 2 (d)). More sophisticated approaches such as [Kopf et al. 2013]

(a) Pixel Artist, 64×64 cells (b) Pixel Artist, 32×32 cells (GT)

(c) Nearest-neighbor (d) Bicubic

(e) Perceptually-based

[Öztireli and Gross 2015]

(f) Content-adaptive

[Kopf et al. 2013]

(g) Deep Pixelization

[Han et al. 2018]

(h) Ours

Fig. 2. Comparison between different pixelization methods. (a) & (b) show

two images created by pixel artists for the same underlying content, (© Silver

Lemur Games and © Krzysztof Koźmik), where (b) has a lower resolution

of cells and a larger cell size, and (a) is an upscaled version of (b)1. (c) to

(h) show results from different methods using (a) as input to generate a

pixel art with the same cell resolution as (b). Classical downscaling methods

((c) & (d)) either lose details (e.g., the discontinuous black silhouette curves

in (c)) or introduce anti-aliasing effects and blurry edges. The content-

adaptive method from [Kopf et al. 2013] and the perceptually-based method

from [Öztireli and Gross 2015] preserve the content and details better, but

still introduce anti-aliasing effects. The deep-learning-based image-to-image

translation method from [Han et al. 2018] leads to non-uniform cell sizes

and distorted colors. Our learning-based method generates a result with

faithful colors and the desired cell size, without anti-aliasing artifacts.

and [Öztireli and Gross 2015] attempt to better preserve the content
and details. They do not require training data and can generate
small images of arbitrary resolution, thus being cell-controllable.
However, their use of adaptive filters or optimized colors still intro-
duces anti-aliasing effects (see Fig. 2 (e) & (f)), hence they are not
aliasing-aware and defy the aesthetic sense of pixel art.
To preserve semantically salient features, Han et al. [2018] pro-

pose the first data-driven approach to pixel art generation from non-
pixel art images. Different from downsampling the input image, it

1https://www.silverlemurgames.com/2020/07/29/the-secret-story-behind-pixel-
sizes/

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization • 193:3

formulates a cycled image-to-image translation process between the
input image and the resulting pixel art in an unsupervised manner,
to overcome the barrier of missing paired data. Although it has made
breakthroughs in aliasing-awareness and detail-preservation, there
are still two main issues. First, its data organization and network
design do not take the cell size into account; as a result, although
it can achieve an appearance similar to pixel art, the result may
contain non-uniform cells in different sizes (see Fig. 2 (g)), i.e., it is
not cell-controllable. In addition, its model entangles the content
and the pixelization style, which may result in distorted colors.
In this paper, we propose a deep learning-based method for

aliasing-aware and cell-controllable pixel art generation that over-
comes the limitations of existing methods. Our method generates a
result image with the same resolution as the input, where the pixels
form cells with the designated cell size. To control the resulting cell
size, we treat different cell sizes as different image styles, and adopt
the idea of style transfer [Huang and Belongie 2017] to decouple the
image content and the style. Specifically, we introduce a cell size
code that is determined by applying an encoder network module
(CSEnc) on a reference pixel art with the intended cell size. The cell
size code modulates the kernel weights of the intermediate convo-
lutional layers for an image translation network module (I2PNet),
to guide the conversion from a non-pixel art image to an intermedi-
ate result with the designated cell style. As the intermediate result
may still suffer from anti-aliasing effects, we feed it into another
network module (AliasNet) to recover the final pixel art with the
desired aliasing appearance. During training, the generated result
and the reference pixel art are also fed into a discriminator module
(NumEnc) to ensure they have similar styles and the same cell size.
To enable bi-directional and cyclical training, we also introduce a
network module (P2INet) to depixelize a pixel art into a non-pixel
art image, and enforce cycle consistency during training. To train
our model, we collect a Basic Pixel Art Dataset containing pixel
arts of different resolutions, and augment it into two datasets for
training. These include an Aliasing Dataset that contains pixel arts
and their variants with different degrees of anti-aliasing effects, and
a Multi-cell Dataset that contains pixel arts with different cell sizes.
Similar to [Han et al. 2018], our method does not require paired

training data of non-pixel art images and their corresponding pixel
arts. Compared to [Han et al. 2018], our use of the cell size code
and a cell-aware discriminator enables our network to generate
pixel arts with regular cell appearance and the desired cell size. The
novel architecture and the dedicated datasets also help our network
to better preserve the input color and avoid the color distortion
artifacts from [Han et al. 2018]. Extensive experiments show that
our approach can generate pixel arts with crisp and regular cells for
different input image styles, and consistently outperforms existing
methods by large margins. It also provides the first feasible approach
for coherent conversion of a video game into pixel art style.

Our contributions can be summarized as follows:

• We propose the first deep learning-based method that can convert
a non-pixel art image into a pixel art with a designated cell size.

• We present a model that disentangles the learning of color appear-
ance and cell structure, which can achieve cell regularity, aliasing
appearance, and color fidelity simultaneously.

• We develop a method to augment a basic pixel art dataset into
two datasets with different cell sizes and anti-aliasing effects.

• We demonstrate crisp and robust pixelization results over various
cell sizes on different types of inputs. In particular, our method
provides the first feasible approach to video game pixelization.

2 RELATED WORK

Pixelization. A direct approach to pixelization is to downscale
the input image to a lower resolution. Nearest-neighbor, a sampling
method, downscales an image by selecting the color value of the
nearest point. However, this can lead to loss of important details.
An alternative way is to apply linear filters with a fixed kernel such
as bicubic, but they often introduce over-smoothing effects. Kopf
et al. [2013] adaptively vary the filter kernels in a bilateral way to
better focus on local image features and avoid ringing. Öztireli and
Gross [2015] optimize the downscaling method according to the
perceptual metric SSIM to retain essential features as well as local
structures. Weber et al. [2016] use convolutional filters to ensure
high frequency details, while Liu et al. [2018] propose to capture
salient features with 𝐿0 regularization. However, the above methods
follow a locally averaging principle and are not effective in retaining
sharp edges in salient regions.
Some works formulate the pixelization task as an optimization

problem. In [Inglis and Kaplan 2012] and [Inglis et al. 2013], vector
line arts are pixelated by optimizing a rasterization to preserve the
shape properties. Gerstner et al. [2013; 2012] present a multi-step it-
erative algorithm that converts high-resolution images to pixel arts
by optimizing a set of superpixels and an associated color palette.
Kuo et al. [2016] propose a framework for pixel art animation, by
jointly optimizing prominent feature lines of individual frames ac-
cording to animation quality metrics. Shang and Wong [2021] pro-
pose an optimization-based approach that can pixelize portrait im-
ages using limited colors, but it fails to distinguish the edges when
the colors of the object are similar to the background. Although the
above algorithms achieve visually acceptable results, most of them
are not fully automatic and cannot provide end-to-end solutions.

Learning-based Methods. Deep learning has received widespread
attention in recent years and provided fully automatic solutions to
many problems. Using deep learning for end-to-end pixelization is
beneficial because manually drawing pixel art or tuning parameters
for semi-automatic methods can be time-consuming. The online
pixelization project PixelMe [Sato 2020] is built upon pix2pix [Isola
et al. 2017], which uses conditional GAN to perform supervised
learning on paired data. However, it is difficult to collect such paired
datasets for pixel arts. CycleGAN [Zhu et al. 2017] proposes an
unsupervised image-to-image translation solution with unpaired
data. Following this approach, Han et al. [2018] propose an unsuper-
vised pixelization method that allows training with unpaired data.
However, their approach does not provide cell size control and may
produce results with distorted colors. Kuang et al. [2021] focus on
preserving the contour details based on CycleGAN, at the expense
of introducing artifacts. In comparison, our new solution integrates
cell controllability, crispness, and robustness simultaneously.

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:4 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

NumEnc

<2>Two-stage Pixelization

Identity Loss

Cycle Consistency Loss

GAP

MLP

Cell
emebedding

Generated pixel art

I2PNet

P2INet

AliasNet

Input image
Grayscale form

of reference pixel art

Ce
ll

si
ze

 c
od

e

Large Margin Cosine Loss

Cell feature

<1>Structural Cell
Representation

Structure
extractor

<3>Numerical Cell Representation

CSEnc

GAN Loss
L1 Loss

Reference pixel art

[0, 0, 1, 0, 0, 0, 0]
Cell size category
(Ground Truth)

Pretrained and fixed

Trainable

Intermediate result

GAP + 1×1 Conv

feature map

Fig. 3. Overview of the proposed method. To control the cell size of the generated pixel art, during training our method takes a reference pixel art as an

additional input, and encodes it into a cell size code using the Cell Structure Encoder (CSEnc) module (<1>). The cell size code is then used in a two-stage

pixelization process (<2>): it is first embedded into the I2PNet, takes an input image and produces an intermediate result with the desired cell size; the result is

further fed into the AliasNet to remove anti-aliasing effects and obtain a crisp pixel art output. During training, the generated output is depixelized to the

original input via the P2INet for retaining the correct cell colors. The Numerical Encoder (NumEnc) is used as a discriminator and enforces the same cell size

style between the output and reference pixel arts (<3>). (© eBoyArts, © Tencent.)

3 OVERVIEW

In this paper, we consider a pixel art as a grid of square cells, where
each cell contains 𝑁×𝑁 pixels of the same color. For such a pixel
art, we say that it has a cell size 𝑁×. In the most simple case, each
cell contains only one pixel (i.e., with a cell size 1×), and we refer to
such pixel arts as “one cell one pixel”. For easier display or editing,
such pixel arts can be upscaled using nearest-neighbor interpolation
into a form with a cell size 𝑁× where 𝑁 > 1. On the other hand,
pixel arts with a cell size 𝑁× (𝑁 > 1) can also be downscaled to a
one-cell-one-pixel form using nearest-neighbor interpolation.

Given an input image, our goal is to convert it into a pixel art with
the same pixel resolution and a cell size 𝑁×, where the parameter 𝑁
is specified by the user. In this way, the generated pixel art has an𝑁×

reduction in its effective resolution (i.e., the resolution for its grid of
cells), while its pixel resolution remains the same as the input. This
setting enables us to design a single network that generates pixel
arts with different cell sizes, making the generation process cell-
controllable. An alternative approach to cell-controllability would
be to train a separate downsampling network for each cell size.
Compared to this approach, our single-network design offers a few
benefits. First, although pixel arts of various cell sizes are visually
different, the underlying low-level features (edges, corners, textures,
etc.) are similar. Our single-network approach can facilitate the

learning of such common features across different cell sizes and
achieve better results. It can also save training time, as there is no
need to re-learn the common features for different cell sizes. Finally,
a single network can be deployed more easily in practice.

Using image samples {𝑐𝑖 }
𝐻
𝑖=1 from the input image domain C and

pixel art samples {𝑝 𝑗 }
𝑀
𝑗=1 from the pixel art domain P, our network

learns a mapping 𝐹 from C to the power set of P, such that an
image 𝑐 is mapped to a set 𝐹 (𝑐) that contains pixel arts with the
same underlying content as 𝑐 and different cell sizes. Fig. 3 shows
an overview of our network architecture.
A particular challenge is that the samples {𝑐𝑖 } and {𝑝 𝑗 } are not

paired, since the “original” image of a pixel art is usually not avail-
able. To address this issue, during training we use the sample pixel
arts {𝑝 𝑗 } as reference to provide structural information that guides
the pixel art generation. Specifically, to control the cell size of the
generated pixel art, we introduce a high-dimensional cell size code
as an auxiliary input. During training, the cell size code is derived
by applying a cell size encoder module (CSEnc) to the grayscale
form 𝑝 𝑗 of a reference pixel art 𝑝 𝑗 , which guides the network to
generate a pixel art with the same cell size as 𝑝 𝑗 . The cell size code
is utilized as an auxiliary input to an image-to-pixel-art network
module (I2PNet), which converts the input image 𝑐𝑖 into an inter-
mediate image 𝐼𝑐𝑖 that is closer to the desired pixel art but may still

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization • 193:5

Fig. 4. Examples from our non-pixel art dataset. Note that the first image is

from [Zitnick and Parikh 2013], the second one is from [Royer et al. 2020],

and others are from © Tencent.

80×101

50×60280×190

40×36

44×42

60×61

Fig. 5. Examples from our Basic Pixel Art Dataset, which contains images

in different resolutions. Note that each cell of these images contains only

one pixel. (© eBoyArts.)

suffer from anti-aliasing effects with blurred appearance and color-
shifting. The intermediate image is then fed into another module
(AliasNet) to remove the anti-aliasing effects and generate the final
pixel art 𝑝𝑐𝑖 . During training, we follow CycleGAN [Zhu et al. 2017]
and use a pixel-art-to-image network module (P2INet) to convert the
result 𝑝𝑐𝑖 back to the input image, and enforce the cycle consistency
between the input image and the resulting pixel art. In addition, we
introduce a numerical encoder module (NumEnc) as a discriminator
for our GAN training, to ensure the result 𝑝𝑐𝑖 generated by AliasNet
has a pixel art appearance. To further ensure 𝑝𝑐𝑖 has the desired
cell size, we apply NumEnc to 𝑝𝑐𝑖 and the reference pixel art 𝑝 𝑗
respectively to classify their cell sizes and penalize the difference.
In the following, we will first present our datasets in Section 4,

followed by our network modules and their training in Section 5.

4 DATASETS

The training of our model requires both non-pixel art and pixel
art images. For the former type, we collect a dataset consisting
of 4235 non-pixel art images, where 790 images are from the
CartoonSet [Royer et al. 2020], 277 images are from the Abstract
Scene dataset [Zitnick and Parikh 2013], and the rest are from the
Internet. All images are scaled to the resolution of 512×512. Fig. 4
shows some images from the dataset.

For pixel art images, we collect and generate three datasets:

• a Basic Pixel Art Dataset that contains pixel arts in one-cell-one-
pixel forms;

• an Aliasing Dataset that includes pixel arts and their variants with
different degrees of anti-aliasing effects;

• a Multi-cell Dataset of pixel arts with different cell sizes.

Original

HeavyLight

883

Anti-aliased Versions

Fig. 6. Examples from our Aliasing Dataset, which contains ground-truth

pixel arts (“Original”) and their variants with different degrees of anti-

aliasing (“Anti-aliased Versions”). (© eBoyArts.)

The Aliasing Dataset and the Multi-cell Dataset are both derived
from the Basic Pixel Art Dataset, as explained below.

Basic Pixel Art Dataset. The Basic Pixel Art Dataset contains a
variety of pixel art images in one-cell-one-pixel forms. To construct
the dataset, we first collect 4033 pixel art images from the Internet.
For images that have a cell size larger than 1×, and we downscale
them to a one-cell-one-pixel form using nearest-neighbor down-
sampling. The final images in the dataset have resolutions between
1847×1701 and 11×9. Some examples are shown in Fig. 5.

Aliasing Dataset. In order to train the AliasNet, we need paired
pixel art images with and without anti-aliasing effects in a fixed
resolution. To this end, we synthesize anti-aliased versions of the
images in the Basic Pixel Art Dataset as follows. We first select
pixel arts with a resolution no higher than 128×128, and upscale
them to 256×256. Then we apply the Lanczos filter [Turkowski
1990] to downsample these 256×256 images to 80×80, 64×64, 48×48,
32×32, and 16×16, respectively, to introduce anti-aliasing effects.
Finally, all the downsampled images are upscaled back to 256×256
using nearest-neighbor interpolation. In this way, we obtain a set
of 256×256 pixel arts together with a sequence of images with the
same resolution and content but different degrees of anti-aliasing
(see Fig. 6 for some examples). In total, we have 2500 pixel art images
directly derived from the Basic Pixel Art Dataset, and 12500 images
as their anti-aliased versions. These images are used to train the
AliasNet for removing anti-aliasing effects.

Multi-cell Dataset. To facilitate multi-batch training and loss func-
tion design, we would like the training pixel arts to have a fixed
resolution. Since the images in the Basic Pixel Art Dataset have
diverse resolutions, they must be scaled to the same resolution first
if we want to use them for multi-batch training. However, this may
lead to an ambiguity in the cell size of the resulting image, since
such scaling may result in a non-integer scaling ratio, or different
scaling ratios in the horizontal and vertical directions. In addition,
we would like the training pixel arts to cover a variety of cell sizes,
to help the network learn the characteristics of various cell sizes. To
this end, we use the Basic Pixel Art Dataset to synthesize a Multi-cell
Dataset that consists of pixel arts in the same resolution and differ-
ent cell sizes. From the images in the Basic Pixel Art Dataset, we
generate a set of images in the resolutions of 128×128, 86×86, 64×64,

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:6 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

2× 3× 4× 5×

6× 7× 8×

Fig. 7. Examples from our Multi-cell Dataset, which contains pixel arts in

different cell sizes. (© eBoyArts.)

52×52, 43×43, 37×37, and 32×32, respectively: for a basic pixel art
image smaller than the target resolution, we pad it with pixels of the
background color to reach the desired resolution; on the other hand,
if a basic pixel art image is larger than the target resolution, we crop
non-constant color regions into the desired resolution. The resulting
images are then upscaled by a factor of 2×, 3×, 4×, 5×, 6×, 7×, and
8× respectively using nearest-neighbor interpolation, and cropped
to the resolution of 256×256. Since the images from the Basic Pixel
Art Dataset are all in one-cell-one-pixel forms, such scaling and
cropping operations result in pixel arts with a cell size equal to the
scaling factor. In this way, we obtain a Multi-cell Dataset with a
fixed 256×256 resolution and different cell sizes from 2× to 8×. Our
Multi-Cell Dataset consists of 7000 images, with 1000 images for
each cell size. Fig. 7 shows some examples from the dataset.

5 OUR APPROACH

To leverage unpaired data, our network is trained in a bi-directional
and cyclical way. On the one hand, given a non-pixel art image 𝑐𝑖
and a reference pixel art 𝑝 𝑗 with its grayscale form 𝑝 𝑗 , the training
follows a data flow of CSEnc→I2PNet→AliasNet→P2INet: a pixel
art result 𝑝𝑐𝑖 is first generated using I2PNet and AliasNet from the
image 𝑐𝑖 and the cell size code of 𝑝 𝑗 , and then restored back to a non-
pixel art image 𝑐′𝑖 by P2INet. On the other hand, given a reference
pixel art 𝑝 𝑗 and its grayscale form 𝑝 𝑗 , the training follows a data
flow of P2INet→CSEnc→I2PNet→AliasNet: 𝑝 𝑗 is first converted by
P2INet to a non-pixel art image 𝑐𝑝 𝑗 , which is then restored to a pixel
art image 𝑝′𝑗 using I2PNet and AliasNet with the help of the cell size

code of 𝑝 𝑗 . The NumEnc module is only used during training as a
discriminator for the pixel art output of AliasNet. In this section,
we first present the details of our network components, followed by
our training strategy and the loss function design.

5.1 Network Structure

Cell Size Encoder (CSEnc). The goal of CSEnc is to extract a fea-
ture vector (the cell size code) from the grayscale form 𝑝 𝑗 of the
reference pixel art 𝑝 𝑗 , to be used as an auxiliary input to I2PNet to
indicate the desired cell size. To this end, we pre-train a structure
extractor module for a cell size classification task, whose layers
extract from 𝑝 𝑗 the structural features relevant to the cell size. The

structure extractor follows the VGG19 architecture [Simonyan and
Zisserman 2015] and is pre-trained with a cross-entropy loss using

128×128×256

Width × Height × Channel: 256×256×3

Structure extractor

256×256×128

Conv256×256×64 256×256×64

Conv128×128×128 128×128×128

64×64×512

Conv64×64×256 64×64×256

Conv32×32×512 32×32×512

feature map: 32×32×1024

Fig. 8. Extraction of feature map within our CSEnc module. (© eBoyArts.)

O
ri
g
in
al

O
u
rs

Input Conv1_1 Conv2_1 Conv3_1 Conv4_1 Conv5_4

Fig. 9. Class activation maps of original VGG19 pre-trained with ImageNet

(top row) and our structure extractor (bottom row). The original VGG19

highlights everywhere with warm colors (especially in the lower convolu-

tional layers), while our extractor can focus on regions of interest and the

individual activation point follows a cell structure. The shallow layers of our

extractor focus on local regions with activations in smaller cells, and the

deeper ones focus more on the global structure. (©Nintendo Co., Ltd.)

our Multi-cell Dataset. We then introduce four trainable convolu-
tional layers, with output dimensions of 256×256×64, 128×128×128,
64×64×256 and 32×32×512, respectively. The output of each layer
is concatenated with the output of a corresponding layer from the
structure extractor with the same output dimension and then fed to
the next layer (see Fig. 8). In this way, the final concatenated output
provides a feature map that encapsulates structural features of 𝑝 𝑗 at
different scales. We feed this feature map to a global average pooling
(GAP) layer followed by a trainable multi-layer perceptron (MLP),
to produce a cell size code 𝑆 of dimension 2048×1.
We train the structure extractor with our Multi-cell Dataset in-

stead of directly using VGG19 pre-trained with ImageNet [Deng
et al. 2009], because ImageNet consists of non-pixel art images and
is less effective in extracting pixel art features. Fig. 9 shows the class
activation maps produced using XGrad-CAM [Fu et al. 2020] for the
intermediate layers of our structure extractor, and compares them
with those from VGG19 pre-trained with ImageNet. We can see that
our structure extractor concentrates on the cell structure at each
layer, resulting in an effective cell feature representation.

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization • 193:7

(W/4)×(H/4)×256

(W/4)×(H/4)×256

Input

Ce
ll

siz
e

co
de

Conv

Nearest

Res-Block

Cell size embedding layer

(W/4)×(H/4)×256

I2PNet P2INet and AliasNet

(width × height × channel)
...

... 8 layers

4 blocks 6 blocks

W×H×3

W×H×64

W×H×128

(W/2)×(H/2)×128

(W/2)×(H/2)×256

(W/4)×(H/4)×256

(W/4)×(H/4)×256

(W/2)×(H/2)×128

W×H×64

W×H×3

W×H×3

W×H×64

W×H×128

(W/2)×(H/2)×128

(W/2)×(H/2)×256

(W/4)×(H/4)×256
...

(W/4)×(H/4)×256

(W/4)×(H/4)×256

(W/2)×(H/2)×128

W×H×64

W×H×3

Fig. 10. Architectures of I2PNet, AliasNet and P2INet. The latter two share

the same architecture, which only differs from I2PNet in the middle layers.

Image-to-Pixel-Art Network (I2PNet). The I2PNet is an encoder-
decoder network (see Fig. 10 left) that generates an intermediate
pixelization result from the input image 𝑐𝑖 , using the cell size code
𝑆 from CSEnc as auxiliary guidance for the intended cell size. To
incorporate the cell size information into the generation process, we
introduce cell size embedding layers to merge 𝑆 with the intermedi-
ate feature map produced by the encoding block of I2PNet. Specifi-
cally, we introduce eight intermediate convolutional layers between
the encoder block and decoding block, where each layer receives its
input in 256 channels. Accordingly, we divide the 2048-dimensional

cell size code into eight 256-dimensional blocks 𝑠𝑙 (𝑙 = 1, 2, . . . , 8),
to match the number of input channels for the intermediate con-
volutional layers. Following the style modulation approach from
StyleGAN2 [Karras et al. 2020], we modify the trainable convolu-

tional kernel weights {𝑤𝑙
𝑥𝑦𝑧 } at the 𝑙-th layer as follows:

𝑤𝑙
𝑥𝑦𝑧 = (𝑠𝑙𝑥 ·𝑤𝑙

𝑥𝑦𝑧)

/√∑
𝑥,𝑧

(𝑠𝑙𝑥 ·𝑤𝑙
𝑥𝑦𝑧)

2 + 𝜖 , (1)

where 𝑥 is the index of the input feature map channels, 𝑦 denotes
the output channel numbers, 𝑧 represents the spatial position, and

𝜖 is a small constant to avoid division-by-zero. The weights {𝑤𝑙
𝑥𝑦𝑧 }

are then used as the actual kernel weights for the convolutional
layers. As a result, the cell size code 𝑆 modulates the input to the
convolutional layers in a way that is independent of the scale of
𝑆 [Karras et al. 2020].

AliasNet. The AliasNet is an encoder-decoder network (see Fig. 10
right for its structure) that aims to remove the anti-aliasing effect
that may be present in the intermediate result generated by I2PNet,
which helps to obtain a pixel art image with the desired aliasing
appearance. We pre-train AliasNet with the Aliasing Dataset con-
structed in Section 4, using images with different degrees of anti-
aliasing as input, and the original pixel art as the ground truth for the

L1 Loss GAN Loss
Perceptual Loss

AliasNet Pretraining Process

Original

Anti-aliased Versions

...

AliasNet
Conv Res-block Nearest

Fig. 11. The pre-training process of AliasNet. Using the original pixel arts

and their anti-aliased versions in our Aliasing Dataset, the network learns

to remove anti-aliasing effects and generate pixel arts with sharp edges.

(© Nintendo Co., Ltd.)

output (see Fig. 11). The training process is similar to pix2pix [Isola
et al. 2017]. In addition to the L1 loss and GAN loss, we also calcu-
late the perceptual loss [Johnson et al. 2016] between the generated
result and the target pixel art as part of the training loss function.

Pixel-Art-to-Image Network (P2INet). The P2INet converts a pixel
art back to a non-pixel art image, to enable bi-directional and cyclical
training of our network. It is a encoder-decoder network with the
same structure as AliasNet (see Fig. 10 right). During testing, the
P2INet can also be used for depixelizing pixel art images.

Numerical Encoder (NumEnc). The NumEnc module acts as a
discriminator to ensure the result 𝑝𝑐𝑖 generated by AliasNet has
a pixel art appearance. To this end, we choose PatchGAN [Isola
et al. 2017] as the architecture of NumEnc. During training, both
the result 𝑝𝑐𝑖 and the reference pixel art 𝑝 𝑗 are fed to NumEnc, and
the outputs are used to calculate an adversarial loss (see Sec. 5.2).
Although such an adversarial loss can help to generate results with
pixel art appearance, the results may not have the desired cell size.
To further enforce the cell size, we additionally use global average
pooling and 1×1 convolution to convert the output of NumEnc into
a cell feature vector that indicates the predicted cell size of the input
image. The cell feature vector is then used to compute a large margin

cosine loss that penalizes the deviation between the predicted cell
size and the intended cell size (see Sec. 5.2 for details).

Discriminator for Non-Pixel Art Images. During the backward
cycle of training, the image 𝑐𝑝 𝑗 generated by P2INet from a reference
pixel art 𝑝 𝑗 needs to have a non-pixel art appearance. Similar to
NumEnc, we introduce a PatchGAN discriminator to process both
𝑐𝑝 𝑗 and the input non-pixel art image 𝑐𝑖 , and evaluate an adversarial
loss (see Sec. 5.2).

5.2 Loss Function

In our network, the AliasNet and the structure extractor in CSEnc
are pre-trained, while all other components are trained jointly. The
latter training uses a loss function that consists of five components,
as explained below.

Adversarial Loss. The adversarial loss forms a min-max game that
guides I2PNet and P2INet to generate desired results. We utilize
two PatchGAN discriminators [Isola et al. 2017] 𝐷𝑃 and 𝐷𝐶 , for the

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:8 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

pixel art result 𝑝𝑐𝑖 generated from 𝑐𝑖 and the non-pixel art result
𝑐𝑝 𝑗 generated from 𝑝 𝑗 respectively (see Sec. 5.1), to discriminate
whether they are true or fake via the following adversarial loss:

L𝐺𝐴𝑁
𝐷 = − E𝑐∼C [log𝐷𝐶 (𝑐𝑖)] − E𝑝∼P

[
log𝐷𝑃 (𝑝 𝑗)

]
− E𝑐∼C,𝑝∼P [log(1 − 𝐷𝐶 (𝑐𝑝 𝑗))]

− E𝑐∼C,𝑝∼P [log(1 − 𝐷𝑃 (𝑝𝑐𝑖))] .

(2)

Accordingly, the two generators I2PNet and P2INet are trained via:

L𝐺𝐴𝑁
𝐺 = −E𝑐∼C,𝑝∼P

[
log

(
𝐷𝐶 (𝑐𝑝 𝑗) × 𝐷𝑃 (𝑝𝑐𝑖)

)]
. (3)

Cycle Consistency Loss. Zhu et al. [2017] first propose the cycle
consistency loss to accomplish unsupervised image-to-image trans-
lation with unpaired data. We follow their approach and require
the restored non-pixel art image 𝑐′𝑖 in the forward cycle and the
restored pixel art image 𝑝′𝑗 in the backward cycle to be consistent

with the input images 𝑐𝑖 and 𝑝 𝑗 , respectively. This is achieved via
the following loss:

Lcyc =
1

|S|

∑
(𝑐𝑖 ,𝑝 𝑗) ∈S

(
‖𝑐𝑖 − 𝑐

′
𝑖 ‖1 + ‖𝑝 𝑗 − 𝑝

′
𝑗 ‖1

)
, (4)

where S is the set of training samples.

L1 Loss. To preserve the correct colors when translating a non-
pixel art image 𝑐𝑖 to a pixel art result 𝑝𝑐𝑖 , we apply the L1 loss to
penalize their difference:

LL1 =
1

|S|

∑
(𝑐𝑖 ,𝑝 𝑗) ∈S

‖𝑐𝑖 − 𝑝𝑐𝑖 ‖1 . (5)

Identity Loss. It is challenging to reconstruct faithful colors in un-
supervised image translation between different domains (e.g., non-
pixel art to pixel art). Therefore, following [Taigman et al. 2017], we
require our pixelization module (i.e., I2PNet followed by AliasNet)
and depixelization module (i.e., P2INet) to be close to the identity
map when applied to images from their respective target domains.
This is enforced via the following identity loss:

Lidt =
1

|S|

∑
(𝑐𝑖 ,𝑝 𝑗) ∈S

(
‖𝐺𝑃 (𝑐𝑖) − 𝑐𝑖 ‖1 + ‖𝐺𝐴 (𝐺𝐼 (𝑝 𝑗)) − 𝑝 𝑗 ‖1

)
,

(6)
where 𝐺𝑃 , 𝐺𝐴 , and 𝐺𝐼 denote the P2INet, the AliasNet, and the
I2PNet, respectively. The loss function prevents the networks from
excessively changing the color of the output image.

Large Margin Cosine Loss. Our numerical encoder is used not only
for adversarial training, but also for enforcing the same cell size
between the generated pixel art 𝑝𝑐𝑖 and the reference pixel art 𝑝 𝑗 .
To do so, one possibility is to design a softmax cell size classifier
based on the cell feature vector, and introduce a cross entropy loss
for the generated and reference pixel arts. However, since the visual
difference between different cell sizes may be inconspicuous, the
cross entropy loss is not so effective in producing a clear decision
boundary. In order to maximize the inter-class variance and min-
imize the intra-class variance, we instead utilize a Large Margin
Cosine Loss (LMCL) that was originally used to distinguish similar
faces [Wang et al. 2018]. The LMCL adds a cosine margin penalty
to make the generated features more discriminative. Let 𝑓𝑝 𝑗 and
𝑓𝑝𝑐𝑖

be the cell features produced by the numerical encoder for 𝑝 𝑗

t-SNE visualization for cell size codes

Fig. 12. After the training converges, the CSEnc module generates similar

cell size codes for reference pixel arts in the same cell size. Here we apply

CSEnc to 700 randomly chosen images from our Multi-cell Dataset, with 100

images for each cell size. The resulting cell size codes are visualized using

t-SNE. We normalize each cell size code to a unit vector before applying

t-SNE, since the weight modulation in Eq. (1) is scale-invariant with respect

to the cell size code. The t-SNE visualization shows well-separated clusters

of cell size codes for different cell sizes.

and 𝑝𝑐𝑖 , respectively. Then we compute the LMCL based on the
ground-truth cell size 𝑡 𝑗 of 𝑝 𝑗 as follows:

Llmc =
1

|S|

∑
(𝑐𝑖 ,𝑝 𝑗) ∈S

(
𝐻𝑡 𝑗 (𝑓𝑝 𝑗) + 𝐻𝑡 𝑗 (𝑓𝑝𝑐𝑖

)
)
. (7)

Here the function 𝐻𝑡 𝑗 (·) is defined as

𝐻𝑡 𝑗 (𝑣) = − log
��

𝑒
𝑠 · (𝐶𝑡 𝑗 (𝑣)−𝑚)

𝑒
𝑠 · (𝐶𝑡 𝑗 (𝑣)−𝑚)

+
∑
𝑘≠𝑡 𝑗 𝑒

𝑠 ·𝐶𝑘 (𝑣)

��� , (8)

where𝑚 is a margin parameter that is set to 0.4, 𝑠 is a scaling factor
that is set to 30, and

𝐶𝑡 (𝑣) =
𝑊𝑡

‖𝑊𝑡 ‖
·
𝑣

‖𝑣 ‖
(9)

with𝑊𝑡 being a trainable weight vector associated with cell size 𝑡 .
Note that 𝐶𝑡 (·) is the cosine distance from the weight vector for a
particular cell size. The LMCL helps to enlarge the decision margin
of cell size classification in the angular space for cell feature vectors,
which provides more effective guidance for the network.

Overall Loss Function. In summary, the total loss for the entire
network is a weighted sum of the above loss functions:

Ltotal = 𝜆GAN
(
L𝐺𝐴𝑁
𝐷 + L𝐺𝐴𝑁

𝐺

)
+ 𝜆cycLcyc

+ 𝜆idtLidt + 𝜆L1LL1 + 𝜆lmcLlmc,
(10)

where 𝜆GAN, 𝜆cyc, 𝜆idt, 𝜆lmc are set to 1, 10, 10 and 1, respectively.
𝜆L1 is set to 8 in the first 80 epochs, and increased to 10 afterward.

6 EXPERIMENTS

We conduct extensive experiments to demonstrate the effectiveness
of our model and design choices, and compare its performance with
existing pixelization methods.

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization • 193:9

Input Nearest-neighbor Perceptually-based
[Öztireli and Gross 2015]

Content-adaptive
[Kopf et al. 2013]

Image Abstraction
[Gerstner et al. 2012]

PixelMe
[Sato 2020]

Deep Pixelization
[Han et al. 2018]

Ours

Fig. 13. Qualitative comparison of our method with state-of-the-art methods on pixelization task with the same cell size of 4×. Better viewed in digital version

with zoom function. (© Tencent, © morganaOanagrom, © Arne, © Pablo Hernández and © Bee Square, © GOCARTOONME.)

Implementation Details. We implement our method using Py-
torch [Paszke et al. 2019] on a single NVIDIA GeForce RTX 3090. To
jointly train the network components, we use each image from the
Multi-Cell Dataset as a reference, and pair it with a randomly chosen
image from the non-pixel art dataset described in Section 4 as input.
In total, we use 7000 pairs of input image and reference pixel art
for the training. We train the structure extractor in CSEnc using
SGD, while all other components in our network are trained using
Adam [Kingma and Ba 2015] with 𝛽1 = 0.5 and 𝛽2 = 0.999. The
training batch size is set to 2 and the learning rate is fixed to 0.0002
in all 160 epochs. Additionally, we adopt the training strategy of
[Shrivastava et al. 2017], which uses historically generated images
instead of the last one when the discriminators are updated. There-
fore, we create two image buffers, each holding 50 generated images
during training. Finally, we add spectral normalization [Miyato et al.
2018] to the numerical encoder to stabilize the GAN training process.
It takes about four days for the training to converge.
During testing, we only need to use the I2PNet and AliasNet

(for pixelization) or the P2INet (for depixelization). Note that al-
though we need a reference pixel art to produce the cell size code

during training, this is not necessary for testing: when the training
converges, the CSEnc module produces similar cell size codes for
different reference pixel arts with the same cell sizes, as shown in
Fig. 12. Therefore, unless stated otherwise, we pre-select a represen-
tative cell size code for each cell size, and use them directly during
testing. Also note that although we only use 512×512 input images
for training, our model can handle input images of arbitrary resolu-
tion during testing. To test our method, we additionally collect 1000
non-pixel art images different from our training dataset. Besides the
styles already included in the training set (e.g., cartoon clip arts), our
testing set also covers other types of content such as portrait paint-
ings, video game scenes and posters, and anime scenes. In addition,
our method can convert a video into pixel art style by converting
each frame. Thus we also collect several gameplay videos and test
over 3000 frames. Unless stated otherwise, the results shown in this
section are based on cell size 4×. Our method can efficiently convert
an image into pixel art during testing: on average, it takes 0.052s to
process a 192×192 image, and 0.344s for a 1280×720 video frame.

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:10 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

Input Bicubic Bicubic
& AliasNet

Perceptually-based Perceptually-based
& AliasNet

Content-adaptive Content-adaptive
& AliasNet

Ours

Fig. 14. Qualitative results obtained by using AliasNet to post-process results from different methods. (© Tencent, © Nintendo Co., Ltd.)

6.1 Qualitative Comparisons

For qualitative evaluation of the performance, we compare our
model with several existing methods:

• non-learning-based methods, including nearest-neighbor down-
sampling (referred to as “Nearest-neighbor” in the following),
[Öztireli and Gross 2015] (“Perceptually-based”), [Kopf et al. 2013]
(“Content-adaptive”), and [Gerstner et al. 2012] (“Image Abstrac-

tion”);
• learning-based methods, including [Han et al. 2018] (“Deep Pix-
elization”), and the online pixelization service “PixelMe” [Sato
2020] that is based on the pix2pix model [Isola et al. 2017].

For deep pixelization, the default model trained using the dataset
in [Han et al. 2018] does not perform well in our experiments, since
their dataset mainly consists of simple clip arts. Therefore, we retrain
the model using our datasets to achieve better performance for a
fair evaluation (see the supplementary materials for comparisons
between the original model and our retrained one). We use each
method to generate a pixel art with the same cell size and in the
same resolution as the input image. For methods that generate a
downscaled result smaller than the input, we choose an appropriate
downscaling ratio to generate a result and then upscale it to the
same resolution as the input using nearest-neighbor interpolation.
Fig. 13 shows a comparison between different methods for cell

size 4×. As a basic downsampling method, Nearest-neighbor can lose
important details and result in blocky and discontinuous edges. As
a non-linear filtering approach, Perceptually-based produces blurry

results with anti-aliasing effects on the edges. Although Content-

adaptive generates results with sharper edges than Perceptually-

based, it still suffers from anti-aliasing effects and can lose crucial
details as a kernel-based approach. Image Abstraction is able to gen-
erate crisper results and mitigate the anti-aliasing effects, but it
limits the scale of the color palette after quantization, leading to
discontinuity on edges that is inconsistent with the input (e.g. see
the third row). As for PixelMe, it tends to wrap the pixelization result
with a continuous black boundary, so that the image has continuous
edges. However, PixelMe detects the image content automatically
before conducting pixelization, which can lead to loss of features
if the detection is inaccurate. For example, in the first two rows,
some background regions are missing in the final results. Deep Pix-
elization shows quite good results with crisp edges and less ringing
effect. However, some results have notable color distortion, due to
their winner-take-all loss function, the mandatory downsampling
operations in their model design, and the entangled cell structure
and colors in their training. In comparison, our results are much bet-
ter with crisp and continuous edges, avoiding ringing and blurring
effects. Our model also preserves local details of original inputs.
Sharp edges and aliasing appearances are important character-

istics of pixel art. Our AliasNet not only helps to produce such
desirable appearance in our network, but also can be used as a
standalone post-processing tool to improve pixelization results that
suffer from anti-aliasing effects. In Fig. 14, we apply the AliasNet to
some results produced by bicubic downsampling, Perceptually-based,
and Content-adaptive. All three methods suffer from anti-aliasing

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization • 193:11

Input Perceptually-based Content-adaptive Deep Pixelization Ours

Fig. 15. Qualitative comparison on game scenes. Better viewed in digital version with zoom function. (© Nintendo Co., Ltd., © Tencent, © Bee Square.)

effects in their results, and AliasNet helps to improve the sharpness
of the edges. On the other hand, some details from the input have
already been removed by these methods and cannot be recovered
even with AliasNet (e.g., see the zoomed region in the second and
third rows). In comparison, our method produces sharp pixelated
appearance while preserving the details.
Since pixel art is often used in games, we further compare our

model with existing work on game scenes, and show the results
in Fig. 15. The testing images are in a resolution of 680×425 or
824×516 and obtained from game screenshots and posters. Because
of the limited input resolution required by Image Abstraction and Pix-
elMe, we omit these two methods in this experiment. From Fig. 15,
we can see that the performance of different methods is rather
similar to Fig. 13, and our model can generate good results with
the desirable pixelated appearance even for higher resolution im-
ages. This also demonstrates the possibility of using our method
to convert high-quality video games into pixel art style, by simply
converting each frame individually. Some qualitative results of such
video pixelization can be found in the supplementary video.

Reference

Input Cell size 4× Cell size 4× Cell size 8× Cell size 8×

Fig. 16. Results from our model using reference pixel arts in different cell

sizes. Our method can transfer the cell size style of the references into

pixelization result, regardless of the content in the references. (© eBoyArts,

© Pablo Hernández and © Bee Square, © Tencent.)

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:12 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

2× 4× 6×

Perceptually-based

2× 4× 6×

Content-adaptive

4× 5.33× 8×

Deep Pixelization

2× 4× 6×

Ours

Fig. 17. Qualitative comparison between different methods on high-resolution input images with different cell sizes of pixelization results. Note that the cell

size settings of Deep Pixelization are different from other methods, because the cell size choices are hard-coded in the model design and cannot be changed.

Better viewed in digital version with zoom function. (© Tencent.)

6.2 Cell-controllable Pixelization

One benefit of our model is that it can generate pixel arts with a
specific cell size. To demonstrate the controllability of cell size, in
Fig. 16 we pixelize three input images using cell size codes generated
by CSEnc from four reference pixel arts, where two references have
cell size 4× and the other two have cell size 8×. We can see that
our method generates results with a cell size consistent with the
reference pixel art. In addition, reference pixel arts with the same
cell size lead to almost identical pixelization results. This is because
for pixel arts with the same cell size, the CSEnc module generates
similar cell size codes regardless of their content (also see Fig. 12).
The results show that our method can effectively transfer the cell
size style from the reference pixel art to the resulting image.
In Fig. 17, we compare our method with Perceptually-based,

Content-adaptive and Deep Pixelization in terms of cell controllabil-
ity, using input images at the resolution of 960×600 and 480×720,
respectively. For Perceptually-based and Content-adaptive, with a
small cell size of 2× the pixelization effects are less visible than the
other two methods, while at larger cell sizes of 4× and 6× their
results suffer from anti-aliasing effects with a blurry appearance. As
for Deep Pixelization, it uses a winner-take-all strategy in the loss
function and is only well trained for smaller cells, since a smaller cell
size is closer to the ground truth and tends to lower the loss function.
Moreover, producing a pixel art appearance while assigning the cor-
rect flat colors to the cells is a highly ambiguous training process.
Deep Pixelization learns these two functions together, leading to
unstable color assignments as seen in the results. In comparison,
the separated learning of cell size features and color assignment
in our model helps to overcome these limitations, simultaneously
maintaining regular cell structures, significant aliasing effects and
accurate color assignments during the pixelization process.

Table 1. Quantitative evaluation under two metrics (i.e. FID and KID). The

best results are highlighted in bold.

Method 𝐹𝐼𝐷 ↓ 𝐾𝐼𝐷 × 102 ↓

Perceptually-based [Öztireli and Gross 2015] 217.04 9.20
Content-adaptive [Kopf et al. 2013] 181.66 5.99

Image Abstraction [Gerstner et al. 2012] 169.46 5.24
PixelMe [Sato 2020] 189.54 6.64

Deep Pixelization [Han et al. 2018] 181.63 5.73
Ours 165.87 4.24

Fig. 18 further demonstrates results from our model for cell sizes
from 2× to 8×. More results can be found in the supplementary
materials. The results show that our method is effective across
different input image styles and different cell sizes.

6.3 Quantitative Comparison

We also compare different methods using two metrics: Fréchet In-
ception Distance (FID) [Heusel et al. 2017] and Kernel Inception
Distance (KID) [Bińkowski et al. 2018], which are commonly used in
image generation tasks [Karras et al. 2019, 2020; Park et al. 2019]. FID
measures the Fréchet distance between two Gaussian distributions
obtained from the generated images and the real ones respectively,
where a lower FID indicates a higher similarity. KID is similar to
FID, but is computed by the squared Maximum Mean Discrepancy
(MMD) between Inception features extracted from the generated
and real images. Since KID has a simple unbiased estimator, it is
more consistent with human perception. Tab. 1 shows the values
of FID and KID using different methods on the testing dataset. Our
method outperforms the other methods by a largemargin, indicating
that we can generate more realistic pixelization arts.

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization • 193:13

Input 2× 3× 4× 5× 6× 7× 8×

Fig. 18. More results from our method in different cell sizes. Better viewed in digital version with zooming. (© morganaOanagrom, © Tencent, © Pablo

Hernández and © Bee Square.)

Input I2PNet output AliasNet output P2INet output

Fig. 19. Stage-wise results of our network. (© Pablo Hernández and © Bee

Square, © Rendered Ideas.)

6.4 Ablation Study

We further conduct ablation studies to evaluate the effectiveness of
the components in our pipeline.

Effectiveness of Two-stage Pixelization. The two-stage pixelization
process (i.e., the use of I2PNet followed by AliasNet) is a key factor
for the success of our model. To investigate what is learned in differ-
ent sub-modules, we visualize the intermediate results generated by
our network in Fig. 19. The input image is passed through I2PNet
to obtain an intermediate result image that shows a cell structure
but with degraded color appearance. The artifacts near the edges
can be observed when zooming into the images at this stage. After
passing through AliasNet, the image is refined into visually pleasing
pixelization results. The pixelization results are then reconstructed
back to the non-pixel art form by P2INet to enable cyclical training.

Softmax LMCL

Fig. 20. Comparison between training loss using LMCL (eq.(7)) and softmax-

based cross entropy loss, respectively. Softmax encounters convergence

problems for the generated pixel arts, while LMCL converges successfully

and produces pixel art results that can fool the discriminators.

The underlying cause for this two-stage effect is that AliasNet
tends to reverse the anti-aliasing in an exaggerated way because
of the synthetic training data (i.e., the Aliasing Dataset). As anti-
aliasing itself can soften the edges and diminish the color tone, the
synthetic input data also suffers from this problem bymimicking this
reverse process. Thus, AliasNet is trained to restore the degraded
color. Accordingly, our I2PNet learns to darken the result, such that
AliasNet can produce high-quality results.

Effectiveness of LMCL. To examine the effectiveness of the LMCL
component (7) in our loss function, we compare it with a more
general baseline loss, which is the cross entropy loss (Softmax). We
visualize the training loss of real pixel arts and generated pixel arts
for these two losses separately and show them in Fig. 20. It can
be seen that Softmax converges quickly on real pixel arts, but has
difficulties converging on generated results. Instead, LMCLmitigates

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:14 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

Input CycleGAN Encoder only Baseline Concat Without L𝐿1 Without L𝑙𝑚𝑐 Softmax One-hot Ours

Fig. 21. Ablation study on various model design choices. (© Pablo Hernández and © Bee Square, © Tencent, © Nintendo Co., Ltd.)

this problem and obtain rather low loss values as training goes for
both types of pixel arts. It shows that with LMCL, the generated pixel
arts can fool the discriminators successfully, and their distribution
is close to the real ones. The results also imply that Softmax has
trouble producing pixelization results in our task.

Analysis of Architecture Variants. We set up several variants of
our network to evaluate the key components in its architecture:

• CycleGAN : this is a single stage process where the input is sent
into I2PNet for generating a pixelization result and then converted
back through P2INet;

• Encoder only: it replaces the decoder part of I2PNet with nearest-
neighbor upscaling operator based on CycleGAN ;

• Baseline: it further adds the AliasNet based on CycleGAN ;
• Concat: rather than encoding the reference through CSEnc, the
reference image is concatenated with the input as the input to
I2PNet;

• Without L𝐿1: it removes the L𝐿1 from the loss function of our
full model;

• Without L𝑙𝑚𝑐 : it removes the L𝑙𝑚𝑐 from the loss function of our
full model;

• Softmax: it replaces L𝑙𝑚𝑐 with the softmax-based cross entropy
loss for the loss function of our full model;

• One-hot: rather than using CSEnc to derive the cell size code from
a reference pixel art, we feed a one-hot vector for the cell size
into an MLP to produce the cell size code.

We show a qualitative comparison between these variants
in Fig. 21. Purely relying on CycleGAN generates mild pixelization
effects but introduces white speckle artifacts (e.g., see the region
near the ear in the top row). Replacing the decoder part of I2PNet
with nearest-neighbor operator (Encoder only) is not effective in pro-
ducing pixelization effects but results in artifacts and over-saturated
colors, which demonstrates the importance of our encoder-decoder
structure as well as the cell size code embedding. After adding the
AliasNet (Baseline), the model gets rid of speckle artifacts, the pix-
elization effects are still not obvious. Simply adding the reference
through concatenation (Concat), the result may not show a pixeliza-
tion effect in all regions (e.g., see the legs in the second row), which

indicates the benefit of our CSEnc in directly encoding the reference
image and extracting structural features. For variants related to
the loss functions, removing L𝐿1 may result in color distortions
(e.g., see the background color in the second row). Removing L𝑙𝑚𝑐
can pixelize the outermost edges of the input image but fails in
the details (e.g., see the mouth in the top row). The result of Soft-
max further validates our finding in Fig. 20. Using a one-hot vector
for the cell size rather than a reference image, the model can still
generate pixelated appearance but with serious artifacts (e.g., see
the background in the second and third rows). Different from these
variants, our full model is able to generate visually pleasing and
crisp pixel arts that align with the inputs.

6.5 Depixelization

Since our model adopts a cycle training strategy, it can not only
pixelize natural images but also depixelize pixel arts. More specifi-
cally, the depixelization process is conducted with P2INet, as it is
trained to restore pixel arts back to smooth and high-quality images.
Fig. 22 shows some depixelization results using P2INet on some
pixel arts outside the training set, and compares it with the state-of-
the-art approach from [Kopf and Lischinski 2011]. Our method is
able to generate good-quality results, with smooth and clear details
comparable to [Kopf and Lischinski 2011].

6.6 Limitations

Although our model can achieve good results, it still has some limi-
tations. First, our model does not enforce a strict requirement for
the 𝑁×𝑁 pixels inside a cell to have the exact same color; as a result,
there might be a slight difference between the pixel colors within a
cell. In our experiments, such color difference is not noticeable in
general; it can also be easily fixed by using nearest-neighbor down-
sampling to reduce the result into a one-cell-one-pixel form and
then upscaling it to the correct cell size (see Fig. 24 for some exam-
ples). Second, to ensure color fidelity during pixelization, our model
is trained to preserve the features from the input image as much as
possible. A side effect is that noises from the input may be treated
as features and retained in the output. As shown in Fig. 23, some
existing works such as Perceptually-based and Content-adaptive can

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization • 193:15

Input Pixel Art Ours (P2INet) [Kopf and Lischinski 2011]

Fig. 22. Depixelization results enabled by our framework. Given the cyclical nature of our model, we can use P2INet to perform depixelization on a pixel art to

generate a natural image. (© eBoyArts, © PXLFLX/DeviantArt.)

Noisy input Perceptually-based Content-adaptive Ours

Fig. 23. Unlike Perceptually-based and Content-adaptive, our method may

treat the noises in the input as features and retain them in the output pixel

art. (© Tencent.)

filter out most of the noises due to the nature of their formulation,
while our model preserves these noises and generates unsatisfactory
results. One possible solution is to introduce noisy inputs into the
training data. Third, our model utilizes the L1 loss to enforce color
fidelity between input and final output. This works well in most
cases, but a slight color shift may still arise in a small number of
results (e.g., the last row of Fig. 15). The results may be improved
by designing a more sophisticated color fidelity loss, which will be
left as future work.

7 CONCLUSION

This work presents a novel data-driven approach for generating
high-quality pixel arts from images in a cell-controllable manner.
To enable such control in cell size, our model takes a reference pixel
art as an additional input during training, to provide structural and
numerical regularization. More specifically, the reference pixel art
is encoded into a feature vector that indicates the cell size, which
is fused into a two-stage pixelization process to guide the cell style
of the resulting image. The two-stage pixelization is disentangled
to cell-aware and aliasing-aware stages, resolving the ambiguities
between cell structure, aliasing effects, and color assignment in
traditional joint training approaches. A large margin cosine loss is

Input Output Post-processed

Fig. 24. Our model does not strictly enforce the same color within each

cell. If needed, this can be easily enforced by post-processing using nearest-

neighbor downsampling and upscaling. In general, the images generated

by our model already achieves nearly constant color in each cell, and the

post-processing makes little visual difference. (© Tencent.)

introduced into the loss function, to penalize the cell size difference
between the generated pixel art and the reference. A dataset of
“one-pixel-one-cell” pixel arts, together with its multi-cell and anti-
aliasing augmentations, are utilized to train our model. Through
extensive quantitative and qualitative experiments, we have shown
the effectiveness of our model on diverse types of images for gener-
ating high-quality pixelization results with sharp edges and faithful
expressive contents. Besides, we have demonstrated that our model
can deal with high-resolution images, and we provide the first feasi-
ble solution for video pixelization.

ACKNOWLEDGMENTS

This project is supported by theNational Natural Science Foundation
of China (No. 61972162); Guangdong International Science and Tech-
nology Cooperation Project (No. 2021A0505030009); Guangdong
Natural Science Foundation (No. 2021A1515012625); Guangzhou

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

193:16 • Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang Wen, Junle Wang, and Shengfeng He

Basic and Applied Research Project (No. 202102021074); and CCF-
Tencent Open Research fund (CCF-Tencent RAGR20210114).

REFERENCES
Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. 2018.

Demystifying MMD GANs. In ICLR.
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A

large-scale hierarchical image database. In CVPR. 248–255.
Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo, Yinghui Gao, and Biao Li. 2020.

Axiom-based grad-cam: Towards accurate visualization and explanation of cnns. In
BMVC.

Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam Gingold, and
Andrew Nealen. 2013. Pixelated image abstraction with integrated user constraints.
Computers & Graphics 37, 5 (2013), 333–347.

Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam I Gingold, and
Andrew Nealen. 2012. Pixelated image abstraction. In NPAR@ Expressive. 29–36.

Chu Han, Qiang Wen, Shengfeng He, Qianshu Zhu, Yinjie Tan, Guoqiang Han, and
Tien-Tsin Wong. 2018. Deep unsupervised pixelization. ACM TOG 37, 6 (2018),
1–11.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. 2017. GANs trained by a two time-scale update rule converge to a local
nash equilibrium. In NeurIPS, Vol. 30.

Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time with adaptive
instance normalization. In ICCV. 1501–1510.

Tiffany Inglis and Craig S Kaplan. 2012. Pixelating vector line art. In SIGGRAPH Posters.
108.

Tiffany Inglis, Daniel Vogel, and Craig S Kaplan. 2013. Rasterizing and antialiasing
vector line art in the pixel art style. In NPAR. 25–32.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image
translation with conditional adversarial networks. In CVPR. 1125–1134.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In European conference on computer vision.
Springer, 694–711.

Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 4401–4410.

Tero Karras, Samuli Laine, Miika Aittala, JanneHellsten, Jaakko Lehtinen, and TimoAila.
2020. Analyzing and improving the image quality of stylegan. In CVPR. 8110–8119.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In ICLR.

Johannes Kopf and Dani Lischinski. 2011. Depixelizing pixel art. In ACM SIGGRAPH
2011 papers. 1–8.

Johannes Kopf, Ariel Shamir, and Pieter Peers. 2013. Content-adaptive image down-
scaling. ACM TOG 32, 6 (2013), 1–8.

Hailan Kuang, Nan Huang, Shuchang Xu, and Shunpeng Du. 2021. A Pixel image
generation algorithm based on CycleGAN. In 2021 IEEE 4th Advanced Information
Management, Communicates, Electronic and Automation Control Conference (IMCEC),
Vol. 4. IEEE, 476–480.

Ming-Hsun Kuo, Yong-Liang Yang, and Hung-Kuo Chu. 2016. Feature-Aware Pixel Art
Animation. In Computer Graphics Forum, Vol. 35. 411–420.

Junjie Liu, Shengfeng He, and Rynson W. H. Lau. 2018. 𝐿0 -Regularized Image Down-
scaling. IEEE TIP 27, 3 (2018), 1076–1085.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957
(2018).

A. Cengiz Öztireli and Markus Gross. 2015. Perceptually based downscaling of images.
ACM TOG 34, 4 (2015), 1–10.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic image
synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2337–2346.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. In NeurIPS,
Vol. 32. 8026–8037.

Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri,
Forrester Cole, and Kevin Murphy. 2020. Xgan: Unsupervised image-to-image trans-
lation for many-to-many mappings. In Domain Adaptation for Visual Understanding.
Springer, 33–49.

Sato. 2020. PixelMe: Convert your photo into pixelart. https://pixel-me.tokyo/en/.
Yunyi Shang and Hon-Cheng Wong. 2021. Automatic portrait image pixelization.

Computers & Graphics 95 (2021), 47–59.
Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and

Russell Webb. 2017. Learning from simulated and unsupervised images through
adversarial training. In CVPR. 2107–2116.

Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for
large-scale image recognition. In ICLR.

Yaniv Taigman, Adam Polyak, and Lior Wolf. 2017. Unsupervised cross-domain image
generation. In ICLR.

Ken Turkowski. 1990. Filters for common resampling tasks. Graphics Gems I (1990),
147–165.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng
Li, and Wei Liu. 2018. Cosface: Large margin cosine loss for deep face recognition.
In CVPR. 5265–5274.

Nicolas Weber, Michael Waechter, Sandra C Amend, Stefan Guthe, and Michael Goesele.
2016. Rapid, detail-preserving image downscaling. ACM TOG 35, 6 (2016), 1–6.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In ICCV. 2223–2232.

C Lawrence Zitnick and Devi Parikh. 2013. Bringing semantics into focus using visual
abstraction. In CVPR. 3009–3016.

ACM Trans. Graph., Vol. 41, No. 6, Article 193. Publication date: December 2022.

